Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 1-8    DOI: 10.11868/j.issn.1001-4381.2018.000230
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳化硅陶瓷基复合材料环境障涂层研究进展
刘巧沐, 黄顺洲, 何爱杰
中国航发四川燃气涡轮研究院, 成都 610500
Research Progress in Environmental Barrier Coatings of SiC Ceramic Matrix Composites
LIU Qiao-mu, HUANG Shun-zhou, HE Ai-jie
AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China
全文: PDF(2165 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 碳化硅陶瓷基复合材料(CMC-SiC)因具有低密度、抗氧化、耐高温等优点,成为下一代先进航空发动机热端结构部件的潜在材料。然而,CMC-SiC在燃气环境中面临着严重的腐蚀问题,需要在环境障涂层(environmental barrier coatings,EBCs)的保护下才能实现长时应用。本文介绍了EBCs的选材要求、发展历程、涂层制备工艺、涂层考核技术以及表征手段,综述了EBCs体系在服役过程中存在挥发速率高、使用温度低等问题以及在制备过程中存在涂层晶化率低、致密度低等问题,指出了今后国内在EBCs材料优选、制备工艺、评价方法以及考核平台的研究目标与发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘巧沐
黄顺洲
何爱杰
关键词 航空发动机CMC-SiC复合材料环境障涂层    
Abstract:SiC matrix ceramic composites (CMC-SiC) are considered as the potential primary structural materials in advanced gas turbines because of their low density, good oxidation resistance and high-temperature strength. However, CMC-SiC suffers from serious degradation in the gas environments. With the protection of environmental barrier coatings (EBCs), CMC-SiC composites can be possibly applied as hot components with long lifetime in the aero-engine. The materials selection requirements, development history, preparation process, assessment technologies and characterization methods of EBCs materials system were introduced in this paper. The open problems of EBCs materials system such as high volatile rate, low operating temperature during service and low crystalline fraction, low density of the coatings during the preparation process were summarized and analyzed. The research goal and development direction in the EBCs system optimization, fabrication process development and evaluation and assessment platform were put forward.
Key wordsaero-engine    CMC-SiC composite    environmental barrier coating
收稿日期: 2018-03-07      出版日期: 2018-10-17
中图分类号:  TB332  
通讯作者: 刘巧沐(1984-),男,高级工程师,博士,现从事航空发动机材料工艺与应用研究,联系地址:四川省成都市中国航发四川燃气涡轮研究院(610500),E-mail:lqiaomu@163.com     E-mail: lqiaomu@163.com
引用本文:   
刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料环境障涂层研究进展[J]. 材料工程, 2018, 46(10): 1-8.
LIU Qiao-mu, HUANG Shun-zhou, HE Ai-jie. Research Progress in Environmental Barrier Coatings of SiC Ceramic Matrix Composites. Journal of Materials Engineering, 2018, 46(10): 1-8.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000230      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/1
[1] 傅恒志. 未来航空发动机材料面临的挑战与发展趋向[J]. 航空材料学报, 1998, 18(4):52-61. FU H Z. Challenge and development trends to future aero-engine materials[J]. Journal of Aeronautical Materials, 1998, 18(4):52-61.
[2] 刘大响. 一代新材料, 一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10):1-5. LIU D X. One generation of new material, one generation of new type engine:development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering, 2017, 45(10):1-5.
[3] PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566):280-284.
[4] 梁春华, 李晓欣. 先进材料在战斗机发动机上的应用与研究趋势[J]. 航空材料学报, 2012, 32(6):32-36. LIANG C H, LI X X. Application and development trend of advanced materials for fighter engine[J]. Journal of Aeronautical Materials, 2012, 32(6):32-36.
[5] 李世波, 徐永东, 张立同. 碳化硅纤维增强陶瓷基复合材料的研究进展[J]. 材料导报, 2001, 15(1):45-49. LI S B, XU Y D, ZHANG L T. Study on silicon carbide fibers reinforced ceramic-matrix composites[J]. Materials Review, 2001, 15(1):45-49.
[6] 张立同. 国外航空用陶瓷发展趋势[J]. 航空科学技术, 1994(6):25-28. ZHANG L T. Development trend of foreign aviation ceramics[J]. Aeronautical Science & Technology, 1994(6):25-28.
[7] 肖鹏, 徐永东, 张立同. 高温陶瓷基复合材料制备工艺的研究[J]. 材料工程, 2000(2):41-44. XIAO P, XU Y D, ZHANG L T. Study of processing of high temperature ceramic matrix composites[J]. Journal of Materials Engineering, 2000(2):41-44.
[8] 卢国锋, 乔生儒, 徐艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程, 2014(11):107-112. LU G F, QIAO S R, XU Y. Progress in research on interface layer of continuous fiber reinforced ceramic matrix composites[J]. Journal of Materials Engineering, 2014(11):107-112.
[9] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. ZHANG L T, CHENG L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J].Acta Materiae Composite Sinica,2007,24(2):1-6.
[10] COFER C G, ECONOMY J. Oxidative and hydrolytic stability of boron nitride-a new approach to improving the oxidation resistance of carbonaceous structures[J]. Carbon, 1995, 33(4):389-395.
[11] PADTURE N P. Advanced structural ceramics in aerospace propulsion[J]. Nature Materials, 2016, 15:804-809.
[12] KATOH Y, SNEAD L L, HENAGER C H Jr, et al. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials, 2014, 455:387-397.
[13] MORE K L, TORTORELLI P F, FERBER M K, et al. Exposure of ceramics and ceramic matrix composites in simulated and actual combustor environments[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(2):212-218.
[14] OPILA E J. Variation of the oxidation rate of silicon carbide with water-vapor pressure[J]. Journal of the American Ceramic Society, 1999, 82(3):625-636.
[15] OPILA E J, HANN E R. Paralinear oxidation of CVD SiC in water vapor[J]. Journal of the American Ceramic Society, 1997, 80(1):197-205.
[16] SMIALEK J L, ROBINSON R C, OPILA E J, et al. SiC and Si3N4 recession due to SiO2 scale volatility under combustor conditions[J]. Advanced Composite Materials, 1999, 8(1):33-45.
[17] JACOBSON N S. Corrosion of silicon-based ceramics in combustion environments[J]. Journal of the American Ceramic Society, 1993, 76(1):3-28.
[18] JACOBON N S, OPILA E J, LEE K N. Oxidation and corrosion of ceramics and ceramic matrix composites[J]. Current Opinion in Solid State & Materials Science, 2001, 5(4):301-309.
[19] LEE K N. Current status of environmental barrier coatings for Si-based ceramics[J]. Surface and Coatings Technology, 2000, (133/134):1-7.
[20] EATON H E, LINSEY G D. Accelerated oxidation of SiC CMC's by water vapor and protection via environmental barrier coating approach[J]. Journal of the European Ceramic Society, 2002, 22(14):2741-2747.
[21] LEE K N, MILLER R A, JACOBSON N S. New generation of plasma-sprayed mullite coatings on silicon carbide[J]. Journal of the American Ceramic Society, 1995, 78(3):705-710.
[22] LEE K N, FOX D S, ELDRIDGE J I, et al. Upper temperature limit of environmental barrier coatings based on mullite and BSAS[J]. Journal of the American Ceramic Society, 2003, 86(8):1299-1306.
[23] KIMMEL J, MIRIYALA N, PRICE J, et al. Evaluation of CFCC liners with EBC after field testing in a gas turbine[J]. Journal of the European Ceramic Society, 2002, 22(14):2769-2775.
[24] 刘金铃. 抗高温水氧腐蚀硅酸盐的第一性原理研究[D]. 西安:西北工业大学,2009. LIU J L. First-principles investigation on the high-temperature water vapor corrosion resistant silicates[D]. Xi'an:Northwestern Polytechnical University, 2009.
[25] 鲁琳静. BSAS系环境障碍涂层的制备与耐水腐蚀性能研究[D]. 西安:西北工业大学, 2011. LU L J. Fabrication and water vapor corrosion resistance of BSAS environmental barrier coatings[D]. Xi'an:Northwestern Polytechnical University, 2011.
[26] LEE K. Development of EBCs with enhanced durability and temperature capability[C]//2003 Environmental Barrier Coatings Workshop. Nashville:Gaylord Opryland Resort & Convention Center, 2003:1-21.
[27] LEE K N, FOX D S, BANSALN P. Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics[J]. Journal of the European Ceramic Society, 2005, 25(10):1705-1715.
[28] LEE K N, ELDRIDGE J I, ROBINSON R C. Residual stresses and their effects on the durability of environmental barrier coatings for SiC ceramics[J]. Journal of the American Ceramic Society, 2005, 88(12):3483-3488.
[29] UENO S, OHJI T, LIN H. Designing lutetium silicate environmental barrier coatings for silicon nitride and its recession behavior in steam jets[J]. Journal of Ceramic Processing Research, 2006, 7(1):20-23.
[30] HONG Z L, CHENG L F, ZHANG L T, et al. Water vapor corrosion behavior of scandium silicates at 1400℃[J]. Journal of the American Ceramic Society, 2009, 92(1):193-196.
[31] MAIER N, NICKEL K G, RIXECKER G. High temperature water vapor corrosion of rare earth disilicates (Y,Yb,Lu)2Si2O7 in the presence of Al(OH)3 impurities[J]. Journal of the European Ceramic Society, 2007, 27(7):2705-2713.
[32] WANG Y G, LIU J L. First-principles investigation on the corrosion resistance of rare earth disilicates in water vapor[J]. Journal of the European Ceramic Society, 2009, 29(11):2163-2167.
[33] LEE K N. Protective coatings for gas turbines[M]//DENNIS R A. The gas turbine handbook. Pittsbrrgh:National Energy Technology Library, 2005:419-437.
[34] ZHU D M, BANSAL N P, MILLER R A. Thermal conductivity and stability of hafnia-and zirconate-based materials for 1650℃ thermal/environmental barrier coating applications[J]. Ceramic Transactions, 2003, 153:331-343.
[35] SPITSBERG I, GOVERN C, NAGARAJ B A, et al. Thermal/environmental barrier coating for silicon-comprising materials:EP1683774[P]. 2012-09-19.
[36] CHEN G, LEE K N, TEWARI S N. Slurry development for the deposition of a GdSiO4+ mullite environmental barrier coating on silicon carbide[J]. Journal of Ceramic Processing Research, 2007, 8(2):142-144.
[37] HONG Z L, CHENG L F, ZHANG L T, et al. Internal friction behavior of C/SiC composites with environmental barrier coatings in corrosive environment[J]. International Journal of Applied Ceramic Technology, 2011, 8(2):342-350.
[38] RAMASAMY S, TEWARI S N, LEE K N, et al. Environmental durability of slurry based mullite-gadolinium silicate EBCs on silicon carbide[J]. Journal of the European Ceramic Society, 2011, 31(6):1123-1130.
[39] KOHYAMA A, KHAN Z S, HINOKI T. Microstructure of environmental barrier mullite and erbium silicate coatings on SiC-fiber bonded composites[J]. Key Engineering Materials, 2005, 287:471-476.
[40] KARTHIKEYAN J, BERNDT C C, TIKKANEN J, et al. Plasma spray synthesis of nanomaterial powders and deposits[J]. Materials Science and Engineering:A, 1997, 238(2):275-286.
[41] BRINKER C J, SCHERER G W. Sol-gel science:the physics and chemistry of sol-gel processing[M]. San Diego:Academic Press, 1990.
[42] LU Y, GANGULI R, DREWIEN C A, et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating[J]. Nature, 1997, 389(6649):364-368.
[43] LATZEL S, VAßEN R, STÖVER D. New environmental barrier coating system on carbon-fiber reinforced silicon carbide composites[J]. Journal of Thermal Spray Technology, 2005, 14(2):268-272.
[44] TORREY J D, BORDIA R K. Mechanical properties of polymer-derived ceramic composite coatings on steel[J]. Journal of the European Ceramic Society, 2008, 28(1):253-257.
[45] TORREY J D. Polymer derived ceramic composites as environmental barrier coatings on steel[D]. Washington:University of Washington, 2006.
[46] LIU J, ZHANG L T, CHENG L F, et al. Polymer-derived SiOC-barium-strontium-aluminosilicate coatings as an environmental barrier for C/SiC composites[J]. Journal of the American Ceramic Society, 2010, 93(12):4148-4152.
[47] 刘佳. 聚合物-填料转化陶瓷EBCs的制备基础与失效机制[D]. 西安:西北工业大学,2014. LIU J. Fabrication and failure mechanism of polymer-filler derived ceramic EBCs[D]. Xi'an:Northwestern Polytechnical University, 2014.
[48] LIU J, ZHANG L T, YANG J, et al. Fabrication of SiCN-Sc2Si2O7 coatings on C/SiC composites at low temperatures[J]. Journal of the European Ceramic Society, 2012, 32(3):705-710.
[49] PRICE J R, JIMENEZ O, FAULDER L, et al. Ceramic stationary gas turbine development program-Fifth annual summary[J]. Journal of Engineering for Gas Turbines and Power, 1999, 121(4):1120-1127.
[50] 栾新刚.3D C/SiC在复杂耦合环境中的损伤机理与寿命预测[D]. 西安:西北工业大学,2007. LUAN X G. Degradation mechanisms and life prediction of 3D C/SiC composite in high temperature environments including oxidizing gas and stress[D]. Xi'an:Northwestern Polytechnical University, 2007.
[51] RAMACHANDRA C, LEE K N, TEWARI S N. Spectroscopic nondestructive evaluation of environmental barrier coating failure on silicon-based ceramics[J]. Journal of the American Ceramic Society, 2004, 87(6):1117-1121.
[1] 刘巧沐, 黄顺洲, 何爱杰. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战[J]. 材料工程, 2019, 47(2): 1-10.
[2] 梁贤烨, 弭光宝, 李培杰, 曹京霞, 黄旭. 钛合金叶片燃烧后冷却过程的三维热流耦合数值模拟[J]. 材料工程, 2018, 46(10): 37-46.
[3] 刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程, 2017, 45(10): 1-5.
[4] 王云飞, 张朋, 刘刚, 肇研, 包建文. 航空发动机用聚酰亚胺树脂基复合材料衬套研究进展[J]. 材料工程, 2016, 44(9): 121-128.
[5] 蔡建明, 弭光宝, 高帆, 黄浩, 曹京霞, 黄旭, 曹春晓. 航空发动机用先进高温钛合金材料技术研究与发展[J]. 材料工程, 2016, 44(8): 1-10.
[6] 焦春荣, 焦健, 陈大明, 王岭. BSAS喷涂粉体制备工艺及其对涂层性能的影响[J]. 材料工程, 2016, 44(8): 51-57.
[7] 张俊红, 鲁鑫, 何振鹏, 王志平. 航空发动机可磨耗封严涂层技术研究及性能评价[J]. 材料工程, 2016, 44(4): 94-109.
[8] 贺世美, 熊翔, 何利民. 新型Yb2SiO5环境障涂层1400℃高温氧化行为[J]. 材料工程, 2015, 43(4): 37-41.
[9] 范金娟, 常振东, 陶春虎, 王富耻. Si/Mullite/Er2SiO5新型环境障涂层的1350℃氧化行为[J]. 材料工程, 2014, 0(10): 90-95.
[10] 齐欢. INCONEL 718(GH4169)高温合金的发展与工艺[J]. 材料工程, 2012, 0(8): 92-100.
[11] 贺世美, 牟仁德, 许振华, 何利民, 黄光宏. Si/3Al2O3·2SiO2+BSAS/Yb2SiO5环境障涂层1300℃抗水蒸气性能研究[J]. 材料工程, 2011, 0(7): 34-38,43.
[12] 齐红宇, 温卫东, 孙联文. 带孔复合材料层合板疲劳理论研究[J]. 材料工程, 2004, 0(3): 18-20.
[13] 刘金合, 李华伦, 张津生, 谈军. 航空发动机前后冷气导管CO2激光焊研究[J]. 材料工程, 1999, 0(6): 22-23.
[14] 李贺军, 罗瑞盈, 杨峥. 碳/碳复合材料在航空领域的应用研究现状[J]. 材料工程, 1997, 0(8): 8-10.
[15] 黄旭, 曹春晓, 马济民, 王宝, 高扬, 周尧和. 航空发动机钛燃烧及阻燃钛合金[J]. 材料工程, 1997, 0(8): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn