Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 20-29    DOI: 10.11868/j.issn.1001-4381.2016.000868
  综述 本期目录 | 过刊浏览 | 高级检索 |
零维、一维和二维ZnO纳米材料的应用研究进展
杨丰1, 王飞1, 贾若飞1, 杨丽丽1, 杨慧1,2,3, 李岚1,2,3
1. 天津理工大学 材料科学与工程学院, 天津 300384;
2. 天津市光电显示材料与器件重点实验室, 天津 300384;
3. 显示材料与光电器件教育部重点实验室, 天津 300384
Application Research and Progress of 0D, 1D and 2D ZnO Nanomaterials
YANG Feng1, WANG Fei1, JIA Ruo-fei1, YANG Li-li1, YANG Hui1,2,3, LI Lan1,2,3
1. School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;
2. Tianjin Key Laboratory for Optoelectronic Materials and Devices, Tianjin 300384, China;
3. Key Laboratory of Display Materials and Photoelectric Devices(Ministry of Education), Tianjin 300384, China
全文: PDF(1759 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 氧化锌宽禁带半导体不仅具有优异光电性质,而且包含丰富的零维、一维和二维纳米结构。本文主要从零维、一维和二维氧化锌纳米结构的角度出发,分别论述其在光催化器件、气体探测器、太阳能电池、光探测器、发光二极管、激光器、压电转换器件和阻变存储器应用领域的研究进展,并横向对照3种维度氧化锌纳米材料在不同器件领域的应用情况,分析总结不同维度各自物理特性优势发挥的应用器件,最后对氧化锌纳米材料应用面临的难实现p型掺杂等问题进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨丰
王飞
贾若飞
杨丽丽
杨慧
李岚
关键词 氧化锌纳米材料光电器件器件应用    
Abstract:ZnO as a wide band gap semiconductor not only has excellent optoelectronic properties, but also contains rich 0D, 1D and 2D nanostructures.Based on the 0D, 1D and 2D ZnO nanomaterials, the research progress of main optoelectronic device application, including photocatalysis, gas detectors, solar cells, photodetectors, light emitting diodes, lasers, piezoelectric devices and resistive random access memory was narrated synthetically in this paper.The differences of three dimensions in optoelectronic application of ZnO nanomaterial were laterally comparatively analyzed, and the advantages of different dimensions in the optoelectronic devices were summarized, finally, the problems in the application of zinc oxide nanomaterials were also prospected, such as the difficulty to achieve p-type doping.
Key wordsZnO    nanomaterial    optoelectronic device    device application
收稿日期: 2016-07-14      出版日期: 2018-10-17
中图分类号:  TQ132  
  TN303  
通讯作者: 杨慧(1984-),女,讲师,博士,主要从事无机光电半导体纳米材料的制备、外延生长及其光电器件研究,联系地址:天津市西青区宾水西道391号天津理工大学主校区(300384),E-mail:y.hui1021@tjut.edu.cn     E-mail: y.hui1021@tjut.edu.cn
引用本文:   
杨丰, 王飞, 贾若飞, 杨丽丽, 杨慧, 李岚. 零维、一维和二维ZnO纳米材料的应用研究进展[J]. 材料工程, 2018, 46(10): 20-29.
YANG Feng, WANG Fei, JIA Ruo-fei, YANG Li-li, YANG Hui, LI Lan. Application Research and Progress of 0D, 1D and 2D ZnO Nanomaterials. Journal of Materials Engineering, 2018, 46(10): 20-29.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000868      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/20
[1] BARIK S,SRIVASTAVA A K,MISRA P,et al.Alumina capped ZnO quantum dots multilayer grown by pulsed laser deposition[J].Solid State Communications,2003,127(6):463-467.
[2] WAN Q,LI Q,CHEN Y,et al.Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J].Applied Physics Letters,2004,84(18):3654-3656.
[3] CHANG W,LIN C A,HE J H,et al.Resistive switching behaviors of ZnO nanorod layers[J].Applied Physics Letters,2010,96(24):242109.
[4] ZHANG X,QIN J,XUE Y,et al.Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods[J].Scientific Reports,2014,4:4596.
[5] FOUAD O A,ISMAIL A A,ZAKI Z I,et al.Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity[J].Applied Catalysis B:Environmental,2006,62(1):144-149.
[6] PAUPORTE T,RATHOUSKY J.Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants[J].The Journal of Physical Chemistry C,2007,111(21):7639-7644.
[7] XU T,ZHANG L,CHENG H,et al.Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study[J].Applied Catalysis B:Environmental,2011,101(3):382-387.
[8] McLAREN A,VALDESSOLIS T,LI G,et al.Shape and size effects of ZnO nanocrystals on photocatalytic activity[J].Journal of the American Chemical Society,2009,131(35):12540-12541.
[9] YANG J,SUNG J,PARK W I,et al.Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition[J].Advanced Materials,2004,16(18):1661-1664.
[10] BARUAH S,JAISAI M,IMANI R,et al.Photocatalytic paper using zinc oxide nanorods[J].Science and Technology of Advanced Materials,2010,11(5):055002.
[11] SHISHIYANU S T,SHISHIYANU T S,LUPAN O I.Sensing characteristics of tin-doped ZnO thin films as NO2 gas sensor[J].Sensors and Actuators B:Chemical,2005,107(1):379-386.
[12] JING Z,ZHAN J.Fabrication and gas-sensing properties of porous ZnO nanoplates[J].Advanced Materials,2008,20(23):4547-4551.
[13] BARUWATI B,KUMAR D K,MANORAMA S V.Hydrothermal synthesis of highly crystalline ZnO nanoparticles:a competitive sensor for LPG and EtOH[J].Sensors and Actuators B:Chemical,2006,119(2):676-682.
[14] SINGH G,CHOUDHARY A,HARANATH D,et al.ZnO decorated luminescent graphene as a potential gas sensor at room temperature[J].Carbon,2012,50(2):385-394.
[15] YI J,LEE J M,PARK W I.Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors[J].Sensors and Actuators B:Chemical,2011,155(1):264-269.
[16] TIAN S,YANG F,ZENG D,et al.Solution-processed gas sensors based on ZnO nanorods array with an exposed (0001) facet for enhanced gas-sensing properties[J].The Journal of Physical Chemistry C,2012,116(19):10586-10591.
[17] LONG H,FANG G,LI S,et al.A ZnO/ZnMgO multiple-quantum-well ultraviolet random laser diode[J].IEEE Electron Device Letters,2011,32(1):54-56.
[18] CAO H,ZHAO Y,HO S T,et al.Random laser action in semiconductor powder[J].Physical Review Letters,1999,82(11):2278.
[19] HUANG M H,MAO S,FEICK H,et al.Room-temperature ultraviolet nanowire nanolasers[J].Science,2001,292(5523):1897-1899.
[20] YAN H,HE R,JOHNSON J,et al.Dendritic nanowire ultraviolet laser array[J].Journal of the American Chemical Society,2003,125(16):4728-4729.
[21] GARGAS D J,TOIMIL-MOLARES M E,YANG P.Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy[J].Journal of the American Chemical Society,2009,131(6):2125-2127.
[22] CHU S,OLMEDO M,YANG Z,et al.Electrically pumped ultraviolet ZnO diode lasers on Si[J].Applied Physics Letters,2008,93(18):181106.
[23] KÖNENKAMP R,WORD R C,SCHLEGEL C.Vertical nanowire light-emitting diode[J].Applied Physics Letters,2004,85(24):6004-6006.
[24] QIAN L,ZHENG Y,XUE J,et al.Stable and efficient quantum-dot light-emitting diodes based on solution processed multilayer structures[J].Nature Photonics,2011,5(9):543-548.
[25] SON D I,KWON B W,PARK D H,et al.Emissive ZnO-graphene quantum dots for white-light-emitting diodes[J].Nature Nanotechnology,2012,7(7):465-471.
[26] ZHANG X,LU M,ZHANG Y,et al.Fabrication of a high brightness blue light emitting diode using a ZnO nanowire array grown on p-GaN thin film[J].Advanced Materials,2009,21(27):2767-2770.
[27] TSUKAZAKI A,OHTOMO A,ONUMA T,et al.Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J].Nature Materials,2005,4(1):42-46.
[28] LIM J H,KANG C K,KIM K K,et al.UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering[J].Advanced Materials,2006,18(20):2720-2724.
[29] JIAO S,ZHANG Z,LU Y,et al.ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J].Applied Physics Letters,2006,88(3):031911.
[30] LIU W,GU S L,YE J D,et al.Blue-yellow ZnO homostructural light-emitting diode realized by metal-organic chemical vapor deposition technique[J].Applied Physics Letters,2006,88(9):092101.
[31] XU W Z,YE Z Z,ZENG Y J,et al.ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition[J].Applied Physics Letters,2006,88(17):173506.
[32] SUN X W,HUANG J Z,WANG J X,et al.A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342nm[J].Nano Letters,2008,8(4):1219-1223.
[33] TSAI B S,CHIU H J,CHEN T H,et al.Dual-wavelength electroluminescence from an n-ZnO/p-GaN heterojunction light emitting diode[J].Applied Surface Science,2015,354:74-78.
[34] VIKAS L S,SRUTHI C K,JAYARAJ M K.Defect-assisted tuning of electroluminescence from p-GaN/n-ZnO nanorod heterojunction[J].Bulletin of Materials Science,2015,38(4):901-907.
[35] JUN J H,SEONG H,CHO K,et al.Ultraviolet photodetectors based on ZnO nanoparticles[J].Ceramics International,2009,35(7):2797-2801.
[36] LIU Y,GORLA C R,LIANG S,et al.Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD[J].Journal of Electronic Materials,2000,29(1):69-74.
[37] SOCI C,ZHANG A,XIANG B,et al.ZnO nanowire UV photodetectors with high internal gain[J].Nano Letters,2007,7(4):1003-1009.
[38] HU L F,YAN J,LIAO M Y,et al.An optimized ultraviolet-a light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt[J].Advanced Materials,2012,24(17):2305-2309.
[39] JIN Y Z,WANG J,SUN B,et al.Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles[J].Nano Letters,2008,8(6):1649-1653.
[40] CHEN M,HU L F,XU J,et al.ZnO hollow sphere nanofilm based high performance and low cost photodetector[J].Small,2011,7(17):2449-2453.
[41] CHOU T P,ZHANG Q,FRYXELL G E,et al.Hierarchically structured ZnO film for dye sensitized solar cells with enhanced energy conversion efficiency[J].Advanced Materials,2007,19(18):2588-2592.
[42] KO S H,LEE D,KANG H W,et al.Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell[J].Nano letters,2011,11(2):666-671.
[43] LAW M,GREENE L E,JOHNSON J C,et al.Nanowire dye-sensitized solar cells[J].Nature Materials,2005,4(6):455-459.
[44] KAKIUCHI K,HOSONO E,FUJIHARA S.Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719[J].Journal of Photochemistry and Photobiology A:Chemistry,2006,179(1):81-86.
[45] BEEK W J E,WIENK M M,JANSSEN R A J.Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer[J].Advanced Materials,2004,16(12):1009-1013.
[46] STRZHEMECHNY Y M.Role of defects at nanoscale ZnO and Cu(In,Ga)Se2 semiconductor interfaces[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2006,24(4):1233-1237.
[47] WANG Z,SONG J.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science,2006,312(5771):242-246.
[48] WANG X,SONG J,LIU J,et al.Direct-current nanogenerator driven by ultrasonic waves[J].Science,2007,316(5821):102-105.
[49] WANG Z.Towards self-powered nanosystems:from nanogenerators to nanopiezotronics[J].Advanced Functional Materials,2008,18(22):3553-3567.
[50] QIN Y,WANG X,WANG Z.Microfibre-nanowire hybrid structure for energy scavenging[J].Nature,2008,451(7180):809-813.
[51] GAO P,SONG J,LIU J,et al.Nanowire piezoelectric nanogenerators on plastic substrates as flexible power sources for nanodevices[J].Advanced Materials,2007,19(1):67-72.
[52] LI Z,WANG Z.Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor[J].Advanced Materials,2011,23(1):84-89.
[53] LU M,SONG J,LU M,et al.Piezoelectric nanogenerator using p-type ZnO nanowire arrays[J].Nano Letters,2009,9(3):1223-1227.
[54] CHEN J,GAO Y,ZENG F,et al.Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films[J].Applied Surface Science,2004,223(4):318-329.
[55] EMANETOGLU N W,GORLA C,LIU Y,et al.Epitaxial ZnO piezoelectric thin films for saw filters[J].Materials Science in Semiconductor Processing,1999,2(3):247-252.
[56] SZOT K,SPEIER W,BIHLMAYER G,et al.Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3[J].Nature Materials,2006,5(4):312-320.
[57] HUANG C H,HUANG J S,LIN S M,et al.ZnO1-x nanorod arrays/ZnO thin film bilayer structure:from homojunction diode and high-performance memristor to complementary 1D1R application[J].ACS Nano,2012,6(9):8407-8414.
[58] JI Y,LEE S A,CHA A N,et al.Resistive switching characteristics of ZnO-graphene quantum dots and their use as an active component of an organic memory cell with one diode-one resistor architecture[J].Organic Electronics,2015,18:77-83.
[59] QI J,OLMEDO M,REN J,et al.Resistive switching in single epitaxial ZnO nanoislands[J].ACS Nano,2012,6(2):1051-1058.
[60] HUANG C Y,HO Y T,HUNG C J,et al.Compact Ga-doped ZnO nanorod thin film for making high-performance transparent resistive switching memory[J].IEEE Transactions on Electron Devices,2014,61(10):3435-3441.
[61] CHIANG Y,CHANG W,HO C,et al.Single-ZnO-nanowire memory[J].IEEE Transactions on Electron Devices,2011,58(6):1735-1740.
[62] KHURANA G,MISRA P,KUMAR N,et al.Tunable power switching in nonvolatile flexible memory devices based on graphene oxide embedded with ZnO nanorods[J].The Journal of Physical Chemistry C,2014,118(37):21357-21364.
[63] LAI Y,QIU W,ZENG Z,et al.Resistive switching of plasma-treated zinc oxide nanowires for resistive random access memory[J].Nanomaterials,2016,6(1):16.
[64] LEE S,KIM H,YUN D,et al.Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices[J].Applied Physics Letters,2009,95(26):262113.
[65] YANG Y,PAN F,LIU Q,et al.Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application[J].Nano Letters,2009,9(4):1636-1643.
[66] KIM K Y,SHIM E L,CHOI Y J.Fabrication of transparent AZO/ZnO/ITO resistive random access memory devices and their ZnO active layer deposition temperature-dependent switching characteristics[J].Journal of Nanoscience and Nanotechnology,2016,16(10):10303-10307.
[67] LIN C L,TANG C C,WU S C,et al.Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of Al/ZnO/Al resistive RAM (RRAM)[J].Microelectronic Engineering,2015,136:15-21.
[68] KIM M S,HWAN H Y,KIM S,et al.Effects of the oxygen vacancy concentration in InGaZnO-based resistance random access memory[J].Applied Physics Letters,2012,101(24):243503.
[1] 王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
[2] 朱刚兵, 张得鹏, 钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展[J]. 材料工程, 2019, 47(6): 20-33.
[3] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
[4] 夏永辉, 高强, 王阳毅, 李梦娟. AZO中空纳米纤维的制备及光催化性能[J]. 材料工程, 2018, 46(2): 16-21.
[5] 马慧, 高强, 夏永辉, 刘婉婉, 葛明桥. AZO@C柔性纳米纤维的制备与性能[J]. 材料工程, 2018, 46(1): 119-124.
[6] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[7] 张凌云, 贾若琨, 孙旭辉, 张瑛洁, 刘春光. NH3气氛下N掺杂ZnO的制备及光电性能[J]. 材料工程, 2015, 43(4): 25-29.
[8] 鲍艳, 张永辉, 马建中, 杨永强. 一维纳米氧化锌的制备及应用研究进展[J]. 材料工程, 2015, 43(2): 103-112.
[9] 李芬, 雷涛, 杨莹, 张彦平, 魏进, 杨光辉. 纳米氧化铜的制备及其室温脱除H2S的性能研究[J]. 材料工程, 2015, 43(10): 1-6.
[10] 薄小庆, 刘唱白, 何越, 刘丽, 刘震, 王连元. 多孔纳米棒氧化锌的制备及其气敏特性[J]. 材料工程, 2014, 0(8): 86-89.
[11] 裴立宅, 杨永, 杨连金, 裴银强, 谢义康, 蔡征宇. 一维锗酸盐纳米材料的合成及应用[J]. 材料工程, 2014, 0(1): 90-96.
[12] 刘栓, 孙虎元, 孙立娟, 范汇吉, 刘增文. 海水中Zn(OH)2对镀锌钢腐蚀行为的影响[J]. 材料工程, 2013, (8): 60-64.
[13] 王旭东, 易忠, 沈自才, 顾鹏飞. ZnO白漆的质子辐照损伤与光学性能退化机理[J]. 材料工程, 2013, 0(5): 1-5.
[14] 何鹏, 王君, 顾小龙, 林铁松. 纳米填料导电胶研究进展[J]. 材料工程, 2013, 0(12): 1-7.
[15] 郭伟玲, 李恩重, 王海斗, 杨大祥. MWCNTs催化Ru(bpy)32+阴极电致化学发光[J]. 材料工程, 2013, 0(12): 63-67,73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn