Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (11): 37-44    DOI: 10.11868/j.issn.1001-4381.2016.001159
  综述 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管纤维与薄膜致密化研究现状
韩宝帅1,2, 薛祥1,*(), 赵志勇1,2, 牛涛2, 曲海涛2, 徐严谨2, 侯红亮2
1 哈尔滨工业大学 材料科学与工程学院, 哈尔滨 150001
2 中国航空制造技术研究院, 北京 100024
Research Status of Carbon Nanotube Fibers and Films Densification
Bao-shuai HAN1,2, Xiang XUE1,*(), Zhi-yong ZHAO1,2, Tao NIU2, Hai-tao QU2, Yan-jin XU2, Hong-liang HOU2
1 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2 AVIC Manufacturing Technology Institute, Beijing 100024, China
全文: PDF(3924 KB)   HTML ( 18 )  
输出: BibTeX | EndNote (RIS)      
摘要 

碳纳米管(carbon nanotubes,CNTs)具有良好的力学、电学和热学性能,具有广阔的应用前景,受到各国学者的广泛关注。由碳纳米管束组成的碳纳米管纤维与薄膜是碳纳米管在宏观的主要应用形式,但是其各项性能却远低于单个碳纳米管,主要原因在于其致密度较低。对碳纳米管纤维及薄膜进行致密化处理,是提高其性能的主要方法。本文对近年来碳纳米管纤维与薄膜致密化工作的研究进展进行了概述,归纳了致密化的理论基础,探讨了多种致密化工艺对碳纳米管纤维与薄膜结构的影响,并比较了不同工艺下力学性能、电学性能的变化。基于目前的研究现状,讨论了碳纳米管纤维与薄膜致密化技术工程化应用中的不足,认为采用拉拔与轧制等方法组合强化是未来强化碳纳米管纤维与薄膜的有效方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩宝帅
薛祥
赵志勇
牛涛
曲海涛
徐严谨
侯红亮
关键词 碳纳米管致密化取向优化高强高导电性    
Abstract

Carbon nanotubes(CNTs) exhibit good mechanical, electrical and thermal properties, and thus with wide application prospects, therefore, attracted wide attention are received from scholars of various countries. CNT fibers and films, composed by CNT bundles, are the main application forms of CNTs in macroscopic scale. However, the performance of CNT fibers and films are far lower than that of single CNT, which is mainly owing to their low density. The main approach for strengthening CNT fibers and films is to improve their density. The progress of CNT fiber and film densification researches in recent years was summarized in this article, and the related theoretical basis of the densification was concluded. The influence of different densification processes on their microstructure was discussed, and the tensile properties and electrical properties were compared. Based on current research situation, the shortage was also pointed out in this article, and the process combining the drawing and rolling was considered to be the effective method for CNT fibers and films strengthening.

Key wordscarbon nanotubes    densification    alignment optimization    high strength    high conductivity
收稿日期: 2016-09-27      出版日期: 2018-11-19
中图分类号:  TB321  
基金资助:国防基础科研计划资助(JCKY2017205B032)
通讯作者: 薛祥     E-mail: xxue@hit.edu.cn
作者简介: 薛祥(1961-), 男, 教授, 博士, 研究方向:先进纳米材料与复合材料, 联系地址:哈尔滨工业大学材料科学与工程学院733室(150001), E-mail:xxue@hit.edu.cn
引用本文:   
韩宝帅, 薛祥, 赵志勇, 牛涛, 曲海涛, 徐严谨, 侯红亮. 碳纳米管纤维与薄膜致密化研究现状[J]. 材料工程, 2018, 46(11): 37-44.
Bao-shuai HAN, Xiang XUE, Zhi-yong ZHAO, Tao NIU, Hai-tao QU, Yan-jin XU, Hong-liang HOU. Research Status of Carbon Nanotube Fibers and Films Densification. Journal of Materials Engineering, 2018, 46(11): 37-44.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001159      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/37
Fig.1  碳纳米管束牵伸过程中结构变化示意图[31]
(a)无序堆积碳纳米管束;(b)有序堆积碳纳米管束
Fig.2  碳纳米管纤维截面形貌[23]
(a)~(c)致密后纤维; (d)致密后碳纳米管管束堆积; (e), (f)未致密纤维
Fig.3  碳纳米管纤维拉拔工艺示意图及表面形貌[39]
(a)拉拔模具;(b)拉拔初始阶段低致密度纤维拉拔示意图;(c)拉拔终了阶段高致密度纤维拉拔示意图;(d)拉拔前低密度碳纳米管纤维表面形貌;(e)拉拔后高密度碳纳米管纤维表面形貌
Fig.4  碳纳米管纤维轧制工艺示意图[44]
Fig.5  碳纳米管纤维轧制前后微观结构(1)与拉伸应力-应变曲线(2)[44]
(a)轧制前;(b)轧制后
Fig.6  碳纳米管薄膜拉伸过程的形貌变化[51]
(a)制备态;(b)1.5%变形量;(c)~(e)5%变形量;(f)20%变形量;(g)30%变形量
CNT film Strength/MPa Modulus/GPa Toughness/(J·g-1) Density/(g·cm-3)
As-prepared CNT sheet 186±19 3.2±0.5 84±7 0.47
Stretched CNT sheet 307±28 11.9±0.6 18±6 0.53
CNT sheet with one-time stretching and pressing 416±25 13.4±0.5 32±2 0.68
CNT sheet with two-time stretching and pressing 598±36 15.4±1.0 19±3 0.98
Table 1  牵伸和压缩处理后碳纳米管薄膜的力学性能和堆垛密度[52]
1 De VOLDER M F , TAWFICK S H , BAUGHMAN R H , et al. Carbon nanotubes:present and future commercial applications[J]. Science, 2013, 339 (6119): 535- 539.
doi: 10.1126/science.1222453
2 CHEN H Y , ZENG S , CHEN M H , et al. Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors[J]. Carbon, 2015, 92, 271- 296.
doi: 10.1016/j.carbon.2015.04.010
3 MAYHEW E , PRAKASH V . Thermal conductivity of high performance carbon nanotube yarn-like fibers[J]. Journal of Applied Physics, 2014, 115 (17): 174306- 174309.
doi: 10.1063/1.4874737
4 MITTAL M , KUMAR A . Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning[J]. Sensors & Actuators B Chemical, 2014, 203, 349- 362.
5 LUO S D , OBITAYO W , LIU T . SWCNT-thin-film-enabled fiber sensors for lifelong structural health monitoring of polymeric composites-from manufacturing to utilization to failure[J]. Carbon, 2014, 76 (9): 321- 329.
6 LAWAL A T . Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors[J]. Materials Research Bulletin, 2015, 73, 308- 350.
7 ALI A A , ELTABEY M M , ABDELBARY B M , et al. MWCNTs/carbon nano fibril composite papers for fuel cell and super capacitor applications[J]. Journal of Electrostatics, 2014, 73, 12- 18.
8 JIN Z , TERRONES M , CHONG R P , et al. Carbon science in 2016:status, challenges and perspectives[J]. Carbon, 2016, 98, 708- 732.
doi: 10.1016/j.carbon.2015.11.060
9 YEHEZKEL S , AUINAT M , SEZIN N , et al. Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors[J]. Journal of Power Sources, 2016, 312, 109- 115.
doi: 10.1016/j.jpowsour.2016.02.026
10 JUNG Y , JEONG Y C , KIM J H , et al. One step preparation and excellent performance of CNT yarn based flexible micro lithium ion batteries[J]. Energy Storage Materials, 2016, 5, 1- 7.
11 HANAEI H , ASSADI M K , SAIDUR R . Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells:a review[J]. Renewable & Sustainable Energy Reviews, 2016, 59, 620- 635.
12 YADAV S P , SINGH S . Carbon nanotube dispersion in nematic liquid crystals:an overview[J]. Progress in Materials Science, 2016, 80, 38- 76.
doi: 10.1016/j.pmatsci.2015.12.002
13 ZENG Z H , CHEN M J , JIN H , et al. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding[J]. Carbon, 2016, 96, 768- 777.
doi: 10.1016/j.carbon.2015.10.004
14 KIM T , SRIDHARAN I , ZHU B F , et al. Effect of CNT on collagen fiber structure, stiffness assembly kinetics and stem cell differentiation[J]. Materials Science & Engineering C, 2015, 49, 281- 289.
15 BUSSY C , KOSTARELOS K . Carbon nanotubes in medicine and biology-safety and toxicology[J]. Advanced Drug Delivery Reviews, 2013, 65 (15): 2061- 2062.
doi: 10.1016/j.addr.2013.11.001
16 ERICSON L M , FAN H , PENG H , et al. Macroscopic, neat, single-walled carbon nanotube fibers[J]. Science, 2004, 305 (5689): 1447- 1450.
doi: 10.1126/science.1101398
17 ZHANG S , KOZIOL K K K , KINLOCH I A , et al. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning[J]. Small, 2008, 4 (8): 1217- 1222.
doi: 10.1002/smll.v4:8
18 BEHABTU N , YOUNG C C , TSENTALOVICH D E , et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity[J]. Science, 2013, 339 (6116): 182- 186.
doi: 10.1126/science.1228061
19 QIU L , WANG X T , TANG D W , et al. Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers[J]. Carbon, 2016, 105, 248- 259.
doi: 10.1016/j.carbon.2016.04.043
20 ZHANG X , JIANG K , FENG C , et al. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays[J]. Advanced Materials, 2006, 18 (12): 1505- 1510.
doi: 10.1002/(ISSN)1521-4095
21 TRAN C D . Chapter 7-dry spinning carbon nanotubes into continuous yarn:progress, processing and applications[J]. Nanotube Superfiber Materials, 2014, 211- 242.
22 LI Y L , KINLOCH I A , WINDLE A H . Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J]. Science, 2004, 304 (5668): 276- 278.
doi: 10.1126/science.1094982
23 ZHONG X H , LI Y L , LIU Y K , et al. Continuous multilayered carbonnanotube yarns[J]. Advanced Materials, 2010, 22 (6): 692- 696.
doi: 10.1002/adma.v22:6
24 钟小华, 冯建民, 瞧小花, 等. 化学气相反应合成单分散性碳纳米管研究[J]. 材料工程, 2007, (10): 55- 59.
doi: 10.3969/j.issn.1001-4381.2007.10.014
24 ZHONG X H , FENG J M , QIAO X H , et al. Synthesis of surface oxidized and dispersible carbon nanotubes by chemical vapor reactions[J]. Journal of Materials Engineering, 2007, (10): 55- 59.
doi: 10.3969/j.issn.1001-4381.2007.10.014
25 LU W B , CHOU T W . Analysis of the entanglements in carbon nanotube fibers using a self-folded nanotube model[J]. Journal of the Mechanics and Physics of Solids, 2011, 59 (3): 511- 524.
doi: 10.1016/j.jmps.2011.01.004
26 LI Y , KROGER M . Computational study on entanglement length and pore size of carbon nanotube buckypaper[J]. Applied Physics Letters, 2012, 100 (2): 021907- 0219075.
doi: 10.1063/1.3675912
27 MONTINARO N , GSPANN T S , PANTANO A , et al. Stress transfer within CNT fibres:a FEA approach[J]. Procedia Engineering, 2015, 109, 435- 440.
doi: 10.1016/j.proeng.2015.06.258
28 ZHANG X H , LI Q W . Enhancement of friction between carbon nanotubes:an efficient strategy to strengthen fibers[J]. ACS Nano, 2010, 4 (1): 312- 316.
doi: 10.1021/nn901515j
29 TANG J , QIN L C , SASAKI T , et al. Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure[J]. Physical Review Letters, 2000, 85 (9): 1887- 1889.
doi: 10.1103/PhysRevLett.85.1887
30 ZHANG X H , SUN D Y , LIU Z F , et al. Structure and phase transitions of single-wall carbon nanotube bundles under hydrostatic pressure[J]. Physical Review B, 2004, 70 (3): 2199- 2208.
31 YU M F , LOURIE O , DYER M J , et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000, 287 (5453): 637- 640.
doi: 10.1126/science.287.5453.637
32 BADAIRE S , PICHOT V , ZAKRI C , et al. Correlation of properties with preferred orientation in coagulated and stretch-aligned single-wall carbon nanotubes[J]. Journal of Applied Physics, 2004, 96 (12): 7509- 7513.
doi: 10.1063/1.1810640
33 AKIMA N , IWASA Y , BROWN S , et al. Strong anisotropy in the far-infrared absorption spectra of stretch-aligned single-walled carbon nanotubes[J]. Advanced Materials, 2006, 18 (9): 1166- 1169.
doi: 10.1002/(ISSN)1521-4095
34 WANG Q , DAI J F , LI W X , et al. The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites[J]. Composites Science and Technology, 2008, 68 (7/8): 1644- 1648.
35 LI S , JIN G P , LIANG Z , et al. In-situ characterization of structural changes and the fraction of aligned carbon nanotube networks produced by stretching[J]. Carbon, 2012, 50 (10): 3859- 3867.
doi: 10.1016/j.carbon.2012.04.029
36 KOZIOL K , VILATELA J , MOSIALA A , et al. High-performance carbon nanotube fiber[J]. Science, 2008, 318 (5858): 1892- 1895.
37 徐耿.碳纳米管低成本连续成膜技术与应用研究[D].北京: 中国科学院大学, 2013.
37 XU G.The low-cost continuous preparation and application of carbon nanotube films[D].Beijing: The University of Chinese Academy of Sciences, 2013.
38 BONCEL S , SUNDARAM R M , WINDLE A H , et al. Enhancement of the mechanical properties of directly spun CNT fibers by chemical treatment[J]. ACS Nano, 2011, 5 (12): 9339- 9344.
doi: 10.1021/nn202685x
39 ALVARENGA J , JAROSZ P R , SCHAUERMAN C M , et al. High conductivity carbon nanotube wires from radial densification and ionic doping[J]. Applied Physics Letters, 2010, 97 (18): 182106- 182108.
doi: 10.1063/1.3506703
40 ALVARENGA J.Carbon nanotube materials for aerospace wiring[D].Rochester: Rochester Institute of Technology, 2010.
41 LIU G D , ZHAO Y C , DENG K , et al. Highly dense and perfectly aligned single-walled carbon nanotubes fabricated by diamond wire drawing dies[J]. Nano Letters, 2008, 8 (4): 1071- 1075.
doi: 10.1021/nl073007o
42 JAROSZ P , SCHAUERMAN C , ALVARENGA J , et al. Carbon nanotube wires and cables:near-term applications and future perspectives[J]. Nanoscale, 2011, 3 (11): 4542- 4553.
doi: 10.1039/c1nr10814j
43 JAROSZ P R , SHAUKAT A , SCHAUERMAN C M , et al. High-performance, lightweight coaxial cable from carbon nanotube conductors[J]. ACS Applied Materials & Interfaces, 2012, 4 (2): 1103- 1109.
44 WANG J N , LUO X G , WU T , et al. High-strength carbon nanotube fibre-like ribbon with high ductility and high electrical conductivity[J]. Nature Communications, 2014, 5, 3848.
doi: 10.1038/ncomms4848
45 XU W , CHEN Y , ZHAN H , et al. High-strength carbon canotube film from improving alignment and densification[J]. Nano Letters, 2016, 16 (2): 946- 952.
doi: 10.1021/acs.nanolett.5b03863
46 TRAN T Q , ZENG F , PENG L , et al. Super-strong and highly conductive carbon nanotube ribbons from post-treatment methods[J]. Carbon, 2015, 99, 407- 415.
47 LIU P , TAN Y F , HU D C M , et al. Multi-property enhancement of aligned carbon nanotube thin films from floating catalyst method[J]. Materials & Design, 2016, 108, 754- 760.
48 KOZIOL K K, GARCIA J V, WINDLE A H, et al.Method of increasing the density of carbon nanotube fibres or films: 2520707, [P].2012-07-11.
49 PICK M, WINDLE A H, GARCIA J V et al.Enhancement of the structure and properties of carbon nanotube fibres and films: 20100276633[P].2010-06-24.
50 DENG W L , QIU W , LI Q , et al. Multi-scale experiments and interfacial mechanical modeling of carbon nanotube fiber[J]. Experimental Mechanics, 2014, 54 (1): 3- 10.
doi: 10.1007/s11340-012-9706-1
51 CHENG Q F , BAO J W , PARK J G , et al. High mechanical performance composite conductor:multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J]. Advanced Functional Materials, 2009, 19 (20): 3219- 3225.
doi: 10.1002/adfm.v19:20
52 LIU Q , LI M , GU Y , et al. Highly aligned dense carbon nanotube sheets induced by multiple stretching and pressing[J]. Nano-scale, 2014, 6 (8): 4338- 4344.
53 SEVERINO J , YANG J M , CARLSON L , et al. Progression of alignment in stretched CNT sheets determined by wide angle X-ray scattering[J]. Carbon, 2016, 100, 309- 317.
doi: 10.1016/j.carbon.2016.01.005
54 SHAO Y Q , XU F J , LI W , et al. Interfacial strength and debonding mechanism between aerogel-spun carbon nanotube yarn and polyphenylene sulfide[J]. Composites Part A:Applied Science and Manufacturing, 2016, 88, 98- 105.
doi: 10.1016/j.compositesa.2016.05.025
55 CHENG Q , LI M Z , JIANG L , et al. Bioinspired layered composites based on flattened double-walled carbon nanotubes[J]. Advanced Materials, 2012, 24 (14): 1838- 1843.
doi: 10.1002/adma.v24.14
56 NAM T H , GOTO K , YAMAGUCHI Y , et al. Improving mechanical properties of high volume fraction aligned multi-walled carbon nanotube/epoxy composites by stretching and pressing[J]. Composites Part B:Engineering, 2016, 85, 15- 23.
doi: 10.1016/j.compositesb.2015.09.012
57 LI Y L , ZHONG X H , WINDLE A H . Structural changes of carbon nanotubes in their macroscopic films and fibers by electric sparking processing[J]. Carbon, 2008, 46 (13): 1751- 1756.
doi: 10.1016/j.carbon.2008.07.021
58 LI W , XU F J , WANG Z Y , et al. Effect of thermal treatments on structures and mechanical properties of aerogel-spun carbon nanotube fibers[J]. Materials Letters, 2016, 183, 117- 121.
doi: 10.1016/j.matlet.2016.07.034
59 NIVEN J F , JOHNSON M B , JUCKES S M , et al. Influence of annealing on thermal and electrical properties of carbon nanotube yarns[J]. Carbon, 2015, 99, 485- 490.
[1] 刘小辉, 刘允中. 激光选区熔化成形高强铝合金晶粒细化抑制裂纹研究现状[J]. 材料工程, 2022, 50(8): 1-16.
[2] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[3] 唐帅, 刘佳敏, 李林鲜, 温希平, 彭庆, 刘振宇, 王国栋. 钒微合金钢中α-Fe/V4C3界面结构与稳定性的第一性原理计算[J]. 材料工程, 2022, 50(5): 172-177.
[4] 张婷, 李生娟, 吉莹, 于沺沺, 李田成, 薛裕华. 氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能[J]. 材料工程, 2022, 50(4): 123-131.
[5] 李红, 闫维嘉, 张禹, 杜文博, 栗卓新, MARIUSZBober, SENKARAJacek. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
[6] 刘旺冠, 蒋兴华, 郭建华. 氮化铝/氮化硼/碳纳米管/硅橡胶复合材料的力致填料取向对导热性能的影响[J]. 材料工程, 2022, 50(2): 127-134.
[7] 乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程, 2021, 49(9): 27-40.
[8] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[9] 臧金鑫, 邢清源, 陈军洲, 戴圣龙. 800 MPa级超高强度铝合金的时效析出行为[J]. 材料工程, 2021, 49(4): 71-77.
[10] 刘悦, 吴红艳, 杜林秀. 铁路车辆用V-N-Cr微合金化Q690高强耐候钢组织性能和腐蚀行为[J]. 材料工程, 2021, 49(4): 111-119.
[11] 戴远哲, 唐波, 张振宇, 任首龙. 碳纳米管/石蜡相变复合材料研究进展[J]. 材料工程, 2021, 49(12): 91-99.
[12] 杨博, 李广荣, 徐彤, 杨冠军. 大气等离子喷涂环境障涂层的预热处理致密化方法[J]. 材料工程, 2021, 49(11): 116-124.
[13] 宋富阳, 张剑, 郭会明, 张迈, 赵云松, 沙江波. 热等静压技术在镍基铸造高温合金领域的应用研究[J]. 材料工程, 2021, 49(1): 65-74.
[14] 黄成杰, 杨敏, 李红, 任慕苏, 孙晋良. 三维织造预制体微观结构及致密化[J]. 材料工程, 2021, 49(1): 104-111.
[15] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn