1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China 2 College of Applied Science, Beijing University of Technology, Beijing 100124, China 3 Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
Under normal temperature and pressure conditions, potassium niobate nanowires with uniform diameter and good crystallinity were prepared by laser-induced method using KOH and Nb2O5 as raw materials. The samples were characterized by XRD, SEM, Raman and UV-Vis, the light absorption and photoluminescence properties of potassium niobate nanowires were studied. The results show that the chemical formula of laser-induced samples is KNb3O8 (the space group is Pmmm (47), which is orthorhombic system). The growth mechanism of nanowires is the SLS mechanism. The band gap of the prepared nanowires is 2.84eV, there is a strong blue emission peak at 436nm.
GASPERIN P M . Structure du triniobate(Ⅴ) de potassium KNb3O8, un niobate lamellaire[J]. Acta Cryst, 1982, 38 (7): 2024- 2026.
doi: 10.1107/S056774088200781X
LIU Y L , ZHENG Y Y , CAO Y Y , et al. Synthesis and photocatalytic activity of iron doped CdS by hydrothermal method[J]. Journal of Materials Engineering, 2017, 45 (10): 12- 17.
doi: 10.11868/j.issn.1001-4381.2015.000498
WANG Y C , ZENG X S , AO Z Q , et al. Preparation of graphene via thermal reduction and its adsorption capacity for heavy metal Pb2+[J]. Journal of Materials Engineering, 2017, 45 (10): 6- 11.
doi: 10.11868/j.issn.1001-4381.2016.000815
4
ZHANG T , LEI W , LIU P , et al. Insights into the structure-photoreactivity relationships in well-defined perovskite ferroelectric KNbO3 nanowires[J]. Chem Sci, 2015, 6 (7): 4118- 4123.
doi: 10.1039/C5SC00766F
5
WAROQUET A , DEMANGE V , HAKMEH N , et al. Epitaxial growth and cationic exchange properties of layered KNb3O8 thin films[J]. RSC Adv, 2017, 7 (25): 15482- 15491.
doi: 10.1039/C7RA00261K
6
ZHAN J , LIU D , DU W , et al. Synthesis and characterization of high crystallinity, well-defined morphology stoichiometric lithium niobate nanocrystalline[J]. Journal of Crystal Growth, 2011, 318 (1): 1121- 1124.
doi: 10.1016/j.jcrysgro.2010.11.052
7
SHVALAGIN V V , GRODZYUK G Y , ANDRYUSHINA N S , et al. Photocatalytic activity of layered KNb3O8 and K3H3Nb10.8O30 in gas-phase decomposition of methanol[J]. Theoretical and Experimental Chemistry, 2017, 52 (6): 337- 341.
doi: 10.1007/s11237-017-9487-9
8
MATOS J , LANFREDI S , MONTANA R , et al. Photochemical reactivity of apical oxygen in KSr2Nb5O15materials for environmental remediation under UV irradiation[J]. J Colloid Interface Sci, 2017, 496 (14): 211- 221.
9
SUZUKI S , TESHIMA K , YAMAGUCHI A , et al. Fabrication and photocatalytic performance of highly crystalline nanosheets derived from flux-grown KNb3O8 crystals[J]. Cryst Eng Comm, 2012, 14 (3): 987- 992.
doi: 10.1039/C1CE06035J
10
LIANG B , ZHANG N , CHEN C , et al. Hierarchical yolk-shell layered potassium niobate for tuned pH-dependent photocatalytic H2 evolution[J]. Catal Sci Technol, 2017, 7 (4): 1000- 1005.
doi: 10.1039/C6CY02640K
11
KUDO A . Effect of ion exchange on photoluminescence of layered niobates K4Nb6O17 and KNb3O8[J]. J Phys Chem, 1996, 28 (6): 17323- 17326.
12
ZHANG G , HE F , ZOU X , et al. Hydrothermal synthesis and photocatalytic property of KNb3O8 with nanometer leaf-like network[J]. Journal of Alloys and Compounds, 2007, 427 (1): 82- 86.
13
GEORGIEV R , GEORGIEVA B , VASILEVA M , et al. Optical properties of sol-gel Nb2O5 films with tunable porosity for sensing applications[J]. Advances in Condensed Matter Physics, 2015, 2015 (3): 244- 247.
14
YU B , CAO B , CAO H , et al. Synthesis and nonlinear optical properties of single-crystalline KNb3O8 nanowires[J]. Nanotechnology, 2013, 24 (8): 085704.
doi: 10.1088/0957-4484/24/8/085704
15
ZHAN Z Y , XU C Y , ZHEN L , et al. Large-scale synthesis of single-crystalline KNb3O8 nanobelts via a simple molten salt method[J]. Ceramics International, 2010, 36 (2): 679- 682.
doi: 10.1016/j.ceramint.2009.11.007
16
YEO J , HONG S , KIM G , et al. Laser-Induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design[J]. American Chemical Society, 2015, 9 (6): 6059- 6068.
17
ZHANG G , NAKAMURA A , AOKI T , et al. Au-assisted growth approach for vertically aligned ZnO nanowires on Si substrate[J]. Applied Physics Letters, 2006, 89 (11): 113112.
doi: 10.1063/1.2207832
18
NAM W , MITCHELL J I , YE P D , et al. Laser direct synthesis of silicon nanowire field effect transistors[J]. Nanotechnology, 2015, 26 (5): 055306.
doi: 10.1088/0957-4484/26/5/055306
19
LIN L , LIU L , PENG P , et al. In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology, 2016, 27 (12): 125201.
doi: 10.1088/0957-4484/27/12/125201
20
IN J B , KWON H J , LEE D , et al. In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires:thermally deactivating growth kinetics[J]. Small, 2014, 10 (4): 741- 749.
doi: 10.1002/smll.201301599
21
HWANG D J , RYU S G , GRIGOROPOULOS C P . Multi-parametric growth of silicon nanowires in a single platform by laser-induced localized heat sources[J]. Nanotechnology, 2011, 22 (38): 385303.
doi: 10.1088/0957-4484/22/38/385303
22
HAN L L , XIN H L , KULINICH S A , et al. Hierarchical, ultrathin single-crystal nanowires of CdS conveniently produced in laser-induced thermal field[J]. Langmuir, 2015, 31 (29): 8162- 8167.
doi: 10.1021/acs.langmuir.5b01923
23
PAENG D , LEE D , YEO J , et al. Laser-induced reductive sintering of nickel oxide nanoparticles under ambient conditions[J]. The Journal of Physical Chemistry C, 2015, 119 (11): 6363- 6372.
doi: 10.1021/jp512776p
24
SUN Y , ZHANG Z , LIU L , et al. FTIR, Raman and NMR investigation of CaO-SiO2-P2O5 and CaO-SiO2-TiO2-P2O5 glasses[J]. Journal of Non-Crystalline Solids, 2015, 420 (15): 26- 33.
25
SUN Y , ZHANG Z . Structural roles of boron and silicon in the CaO-SiO2-B2O3 glasses using FTIR, Raman, and NMR spectroscopy[J]. Metallurgical and Materials Transactions B, 2015, 46 (4): 1549- 1554.
doi: 10.1007/s11663-015-0374-2
26
TRENTLER T J . Solution-liquid-solid growth of crystalline Ⅲ-Ⅴ semiconductors:an analogy to vapor-liquid-solid growth[J]. Science, 1995, 270 (5243): 1791- 1794.
doi: 10.1126/science.270.5243.1791
27
ZHANG T , LEI W , LIU P , et al. Insights into the structure-photoreactivity relationships in well-defined perovskite ferroelectric KNbO3 nanowires[J]. Chem Sci, 2015, 6 (7): 4118- 4123.
doi: 10.1039/C5SC00766F
28
SAITO K , KUDO A . Niobium-complex-based syntheses of sodium niobate nanowires possessing superior photocatalytic properties[J]. Inorg Chem, 2010, 49 (5): 2017- 2019.
doi: 10.1021/ic902107u