Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 77-83    DOI: 10.11868/j.issn.1001-4381.2017.001380
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一种新型SnO2@BNNSs@C纳米复合结构及其电化学储能特性
艾青, 杨灿星, 黄仁忠, 杨艳飞, 邹文祥, 袁颂东
湖北工业大学 太阳能高效利用湖北省协同创新中心, 武汉 430068
A Novel SnO2@BNNSs@C Composite Nano-structure and Its Electrochemical Energy Storage Characteristics
AI Qing, YANG Can-xing, HUANG Ren-zhong, YANG Yan-fei, ZOU Wen-xiang, YUAN Song-dong
Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China
全文: PDF(3094 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用简单,环境友好的均匀共沉淀法制备了纳米SnO2@BNNSs复合材料,二氧化锡纳米粒子粒径均匀,粒径大约4~5nm,均匀分布在氮化硼纳米片(BNNSs)上;然后以葡萄糖为碳源制备SnO2@BNNSs@C纳米复合结构,以提高导电性。对比SnO2,SnO2@C,SnO2@BNNSs@C三种纳米材料在电流密度100mA/g下的循环稳定性发现:SnO2@BNNSs@C纳米复合物经过50次循环后可逆比容量可达490mAh/g,库仑效率高达98.8%,揭示了SnO2,BNNSs,C三种组分之间存在的相互协同效应,利于复合材料电化学性能的提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
艾青
杨灿星
黄仁忠
杨艳飞
邹文祥
袁颂东
关键词 纳米复合结构锡基复合材料BNNSs可逆比容量    
Abstract:Nanosized SnO2@BNNSs composites were prepared by the simple and industrializable coprecipitation method. The SnO2 nanoparticles were homogeneous and distributed on BNNSs with diameter at approximately 4-5nm. SnO2@BNNSs@C composite was prepared with glucose as carbon source to improve the electron conductivity. Compared with SnO2 and SnO2@C, the SnO2@BNNSs@C complex has a reversible specific capacity of 490mAh/g after 50 cycles at the current density of 100mA/g, and its efficiency up to 98.8%. The synergistic effect between three components (SnO2, BNNSs, C) is conducive to the improvement of electrochemical performance.
Key wordsnanocomposite structure    tin-based composite    BNNSs    reversible specific capacity
收稿日期: 2017-11-17      出版日期: 2018-11-19
中图分类号:  TM912  
基金资助: 
通讯作者: 袁颂东(1967-),男,教授,博士,主要研究储能材料,联系地址:湖北省武汉市洪山区湖北工业大学太阳能高效利用湖北省协同创新中心(430070),E-mail:yuansd2001@163.com     E-mail: yuansd2001@163.com
引用本文:   
艾青, 杨灿星, 黄仁忠, 杨艳飞, 邹文祥, 袁颂东. 一种新型SnO2@BNNSs@C纳米复合结构及其电化学储能特性[J]. 材料工程, 2018, 46(11): 77-83.
AI Qing, YANG Can-xing, HUANG Ren-zhong, YANG Yan-fei, ZOU Wen-xiang, YUAN Song-dong. A Novel SnO2@BNNSs@C Composite Nano-structure and Its Electrochemical Energy Storage Characteristics. Journal of Materials Engineering, 2018, 46(11): 77-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001380      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/77
[1] 周惠敏,李智勇,牛潇,等.静电纺制备二氧化锡/碳纳米纤维锂离子电池负极材料的研究进展[J].材料科学与工程学报,2015,33(4):619-624. ZHOU H M, LI Z Y, NIU X,et al. Research progress on electrospun SnO2/C nanofibers as anode material for lithium ion batteries[J]. Journal of Matericals and Engieering, 2015,33(4):619-624.
[2] 马昊,刘磊,苏杰,等.锂离子电池Sn基负极材料研究进展[J].材料工程,2017,45(6):138-146. MA H,LIU L,SU J,et al.Research progress on tin-based anode materials for lithium ion batteries[J].Journal of Materials Engineering,2017,45(6):138-146.
[3] GUO X W,FANG X P,SUN Y,et al.Lithium storage in carbon-coated SnO2 by conversion reaction[J]. Journal of Power Sources,2013,226(6):75-81.
[4] WANG C,ZHOU Y,GE M,et al.Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity[J].Journal of the American Chemical Society,2010,132(1):46.
[5] 胡志海,江国栋,熊剑,等.TiO2-NTs/rGO复合材料的制备及电化学性能[J].材料工程,2017,45(12):93-98. HU Z H,JIANG G D,XIONG J,et al.Preparation and electrochemical performance of TiO2-NTs/rGO composite[J].Journal of Materials Engineering,2017,45(12):93-98.
[6] TIAN Q,TIAN Y,ZHANG Z,et al.Facile synthesis of ultrasmall tin oxide nanoparticles embedded in carbon as high-performance anode for lithium-ion batteries[J].Journal of Power Sources,2014,269(4):479-485.
[7] WANG Z,ZHANG H,LI N,et al.Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries[J].Nano Research,2010,3(10):748-756.
[8] LIU W,HUANG X,WANG Z,et al.ChemInform abstract:studies of stannic oxide as an anode material for lithium-ion batteries[J].Cheminform,1998,29(16):59-62.
[9] BONINO C A,JI L,LIN Z,et al.Electrospun carbon-tin oxide composite nanofibers for use as lithium-ion battery anodes[J].ACS Applied Materials & Interfaces,2011,3(3):2534-2542.
[10] PAEK S M,YOO E J,HONMA I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J].Nano Letters,2009,9(1):72-75.
[11] MADAKBAS S,ÇAKMAKCI E,KAHRAMAN M V.Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites[J]. Thermochimica Acta,2013,552(3):1-4.
[12] LI H,TAY R Y,TSANG S H,et al.Reduced graphene oxide/boron nitride composite film as a novel binder-free anode for lithium ion batteries with enhanced performances[J]. Electrochimica Acta,2015,166:197-205.
[13] CHOWDHURY C,KARMAKAR S,DATTA A.Capping black phosphorene by h-BN enhances performances in anodes for Li and Na ion batteries[J].ACS Energy Letters,2016,1(1):253-259.
[14] LUO W,WANG Y,HITZ E,et al. Solution processed boron nitride nanosheets:synthesis, assemblies and emerging applications[J]. Advanced Functional Materials,2017,27(31):1701450.
[15] ZHU W,GAO X,LI Q,et al.Controlled gas exfoliation of boron nitride into few-layered nanosheets[J].Angewandte Chemie,2016,55(36):10766.
[16] ATHANASSIOU E K,GRASS R N,STARK W J. Large-scale production of carbon-coated copper nanoparticles for sensor applications[J]. Nanotechnology,2006,17(6):1668-1673.
[17] REN W,AI Z,JIA F,et al.Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J]. Applied Catalysis B Environmental,2007,69(3/4):138-144.
[18] WANG S,SHI L,CHEN G,et al. In-situ synthesis of tungsten-doped SnO2 and graphene nanocomposites for high-performance anode materials of lithium-ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(20):17163-17171.
[19] XU J,CHU W,LUO S. Synthesis and characterization of mesoporous V-MCM-41 molecular sieves with good hydrothermal and thermal stability[J]. Journal of Molecular Catalysis A Chemical,2006,256(1):48-56.
[20] 高赛男,袁高清,江焕峰,等. 锡粒氧化-水热法合成纳米二氧化锡[J]. 电子元件与材料,2006,25(12):57-59. GAO S N,YUAN G Q,JIANG H F,et al. Synthesis of nanocrystalline SnO2 powders with oxidation of granulated tin-hydrothermal method[J]. Electronic Components & Materials, 2006,25(12):57-59.
[21] 杜保立,崔燕岭,王海英,等. Al2O3/SnO2纳米复合粉体制备及其红外吸收特性研究[J]. 河南师范大学学报(自然科学版),2007,35(1):68-70. DU B L,CUI Y L,WANG H Y,et al. Preparation and infrared absorbency of Al2O3/SnO2 nanocomposites[J]. Journal of Henan Normal University(Natural Science Edition),2007,35(1):68-70.
[22] LI J S,ZHANG C R,LI B. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition[J]. Applied Surface Science,2011,257(17):7752-7757.
[23] WEN L,QIN X,MENG W,et al. Boron oxide-tin oxide/graphene composite as anode materials for lithium ion batteries[J].Materials Science & Engineering:B,2016,213:63-68.
[24] WANG C,DU G,et al. Ultrathin SnO2 nanosheets:oriented attachment mechanism,nonstoichiometric defects,and enhanced lithium-ion battery performances[J]. Journal of Physical Chemistry C,2013,116(6):4000-4011.
[25] TIAN Q,TIAN Y,ZHANG Z,et al. Fabrication of CNT@void@SnO2@C with tube-in-tube nanostructure as high-performance anode for lithium-ion batteries[J]. Journal of Power Sources,2015,291:173-180.
[1] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[2] 闫时建, 郝豫宝, 郭锦, 张敏刚. 正极材料不同配比对锂硫电池性能的影响机理[J]. 材料工程, 2018, 46(11): 71-76.
[3] 李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
[4] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[5] 冯彩梅, 巩宇, 陈永翀, 刘丹丹, 张萍. 球磨法制备锂离子液流电池石墨负极浆料的性能研究[J]. 材料工程, 2018, 46(2): 1-8.
[6] 邓凌峰, 覃昱焜, 彭辉艳, 连晓辉, 吴义强. 高温还原GO制备LiFePO4/石墨烯复合正极材料及表征[J]. 材料工程, 2018, 46(2): 9-15.
[7] 张红涛, 尚华, 顾波, 张恒源. 沸石基锂离子电池隔膜的制备及性能[J]. 材料工程, 2017, 45(12): 83-87.
[8] 马昊, 刘磊, 苏杰, 路雪森. 锂离子电池Sn基负极材料研究进展[J]. 材料工程, 2017, 45(6): 138-146.
[9] 邓凌峰, 彭辉艳, 覃昱焜, 吴义强. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45(4): 121-127.
[10] 张娜, 唐致远, 卢星河. 尖晶石LiMn1.98RE0.02O4(RE=Ce,Nd)及其性能研究[J]. 材料工程, 2005, 0(11): 35-37,63.
[11] 杨威, 曹传堂, 曹传宝. 共沉淀法制备锂离子电池正极材料LiFePO4及其性能研究[J]. 材料工程, 2005, 0(6): 36-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn