Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (12): 131-136    DOI: 10.11868/j.issn.1001-4381.2016.001032
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
回归时间对7150铝合金力学性能与组织的影响
张研1, 邓运来1,2,*(), 范世通2, 龙涛2
1 中南大学 轻合金研究院, 长沙 410083
2 中南大学 材料科学与工程学院, 长沙 410083
Influence of Retrogression Time on Mechanical Properties and Microstructure of 7150 Aluminum Alloy
Yan ZHANG1, Yun-lai DENG1,2,*(), Shi-tong FAN2, Tao LONG2
1 Light Alloy Research Institute, Central South University, Changsha 410083, China
2 School of Materials Science and Engineering, Central South University, Changsha 410083, China
全文: PDF(28968 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用硬度、常温拉伸、恒载荷拉伸、剥落腐蚀及透射电镜等方法研究回归时效时间对7150-T77铝合金性能和组织的影响。结果表明:随回归时效时间的延长,晶内η'相先回溶再重新析出η相,并不断粗化,导致合金最终力学性能先升高后降低,η'相回溶与η相析出的临界时间为30min,此时合金最终力学性能最高;晶界η相不断粗化且不连续,大幅提高合金的抗腐蚀性能;再时效阶段存在硬度峰值,且回归时效时间越长,达到硬度峰值时间越短。对比实验表明,较优的T77制度为105℃/17h+190℃/30min+120℃/23h,其抗拉强度(σb)、屈服强度(σ0.2)和伸长率(δ)分别为608,544MPa和10.4%,剥落腐蚀评级为EA级,恒载荷实验中抗拉强度和伸长率损失分别为4.9%和5.0%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张研
邓运来
范世通
龙涛
关键词 7150铝合金三级时效回归时间力学性能微观组织    
Abstract

The influence of the retrogression time on properties and microstructure of 7150-T77 aluminum alloy was studied by hardness testing, tensile property testing, exfoliation corrosion test and TEM. Results indicate that the matrix precipitated η' phase re-dissolves first, and then η phase re-precipitates and becomes coarsened with the extending of retrogression time. The ultimate mechanical properties increase first then decrease as retrogression time increases. The critical time of the η' phase re-dissolution and the η phase precipitation is 30min, At this point, alloys have the highest ultimate mechanical properties, and the grain boundary precipitated η phase becomes coarsened and discontinuous, leading to lower mechanical properties and better corrosion resistance, peak hardness exists at re-aging stage. With the retrogression time extending, the time for the alloy to reach the peak hardness becomes shorter. Optimal T77 aging treatment is 105℃/17h+190℃/30min+120℃/23h. With this treatment, the ultimate tensile strength (σb), yield strength (σ0.2) and elongation (δ) are 608, 544MPa and 10.4%, respectively, the exfoliation corrosion test gets EA level, the σb and δ loss in constant loading tensile testing is 4.9% and 5.0%, respectively.

Key words7150 aluminum alloy    three-step aging    retrogression time    mechanical property    microstructure
收稿日期: 2016-08-31      出版日期: 2018-12-18
中图分类号:  TG146.2+1  
基金资助:国家重点基础研究发展计划(2012CB619500);国家重点研发计划(2016YFB0300901);国家自然科学基金(51375503);广西重大专项计划(14122001-5)
通讯作者: 邓运来     E-mail: luckydeng@mail.csu.edu.cn
作者简介: 邓运来(1969-), 男, 博士, 教授, 博士生导师, 从事轻合金加工以及工艺方面的研究, 联系地址:湖南省长沙市麓山南路932号中南大学化工楼材料科学与工程学院(410083), E-mail:luckydeng@mail.csu.edu.cn
引用本文:   
张研, 邓运来, 范世通, 龙涛. 回归时间对7150铝合金力学性能与组织的影响[J]. 材料工程, 2018, 46(12): 131-136.
Yan ZHANG, Yun-lai DENG, Shi-tong FAN, Tao LONG. Influence of Retrogression Time on Mechanical Properties and Microstructure of 7150 Aluminum Alloy. Journal of Materials Engineering, 2018, 46(12): 131-136.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001032      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/131
Fig.1  预时效阶段时效硬化曲线
Fig.2  回归阶段硬度曲线(a)与再时效阶段的硬度(b)以及电导率曲线(c)
Sample Three-step aging process
1# 105℃/17h+190℃/20min+120℃/23h
2# 105℃/17h+190℃/30min+120℃/23h
3# 105℃/17h+190℃/40min+120℃/22h
4# 105℃/17h+190℃/120min+120℃/20h
Table 1  不同回归时间的最优时效制度
Sample σb/MPa σ0.2 /MPa δ/%
1# 585 519 11.1
2# 608 544 10.4
3# 582 521 12.9
4# 524 488 14.6
Table 2  不同回归时间的7150-T77合金拉伸性能
Fig.3  不同回归时间后再时效处理剥落腐蚀的形貌 (a)20min; (b)30min; (c)40min
Aging process Morphology Level
105℃/17h+190℃/20min+120℃/23h Delamination EC
105℃/17h+190℃/30min+120℃/23h Slight delamination EA
105℃/17h+190℃/40min+120℃/22h Pitting corrosion PC
Table 3  不同回归时间的剥落腐蚀等级
Retrogression time/min σb/MPa σ0.2/MPa δ/% Loss of σb /% Loss of σ0.2/% Loss of δ/%
20 546 502 10.4 6.1 3.2 6.4
30 578 525 9.8 4.9 3.5 5.0
40 561 518 12.2 3.5 2.3 4.9
Table 4  不同回归时间的恒载荷拉伸实验性能
Fig.4  回归阶段TEM照片 (a)20min; (b)30min; (c)40min
Fig.5  回归阶段衍射斑点 (a)20min; (b)30min; (c)40min
Fig.6  回归30min后不同再时效时间的TEM照片 (a)20h;(b)23h;(c)27h
1 方华婵, 陈康华, 巢宏, 等. Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程, 2009, 14 (6): 351- 358.
doi: 10.3969/j.issn.1673-0224.2009.06.001
1 FANG H C , CHEN K H , CHAO H , et al. Current research status and prospects of ultra strength Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14 (6): 351- 358.
doi: 10.3969/j.issn.1673-0224.2009.06.001
2 何正林, 高文理, 陆政, 等. 热处理对7A85铝合金组织和性能的影响[J]. 材料工程, 2015, 43 (8): 13- 18.
2 HE Z L , GAO W L , LU Z , et al. Effects of heat treatment on microstructure and properties of 7A85 aluminum alloy[J]. Journal of Materials Engineering, 2015, 43 (8): 13- 18.
3 PARK J K , ARDELL A J . Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651[J]. Metallurgical and Materials Transactions A, 1984, 15 (8): 1531- 1543.
doi: 10.1007/BF02657792
4 郑子樵, 李红英, 莫志民. 一种7055型铝合金的RRA处理[J]. 中国有色金属学报, 2001, 11 (5): 771- 776.
doi: 10.3321/j.issn:1004-0609.2001.05.007
4 ZHENG Z Q , LI H Y , MO Z M . Retrogression and reaging treatment of a 7055 type aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2001, 11 (5): 771- 776.
doi: 10.3321/j.issn:1004-0609.2001.05.007
5 韩小磊, 熊柏青, 张永安, 等. 欠时效态7150合金的高温回归时效行为[J]. 中国有色金属学报, 2011, 21 (1): 80- 87.
5 HAN X L , XIONG B Q , ZHANG Y A , et al. High-temperature retrogression behavior of under-aged 7150 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21 (1): 80- 87.
6 张新明, 李鹏辉, 刘胜胆, 等. 回归时间对7050铝合金晶间腐蚀性能的影响[J]. 中国有色金属学报, 2008, 18 (10): 1795- 1801.
doi: 10.3321/j.issn:1004-0609.2008.10.008
6 ZHANG X M , LI P H , LIU S D , et al. Effect of retrogression time on intergranular corrosion of 7050 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2008, 18 (10): 1795- 1801.
doi: 10.3321/j.issn:1004-0609.2008.10.008
7 曾渝, 尹志民, 朱远志, 等. RRA处理对超高强铝合金微观组织与性能的影响[J]. 中国有色金属学报, 2004, 14 (7): 1188- 1194.
doi: 10.3321/j.issn:1004-0609.2004.07.024
7 ZENG Y , YIN Z M , ZHU Y Z , et al. Effect of RRA on microstructure and properties of new type ultra high strength aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2004, 14 (7): 1188- 1194.
doi: 10.3321/j.issn:1004-0609.2004.07.024
8 CINA B M.Reducing the susceptibility of alloys, particularly aluminum alloys, to stress corrosion cracking: US 3856584[P].1974-12-24.
9 刘文辉, 何圳涛, 唐昌平, 等. 变形条件对2519A铝合金动态力学性能与组织演化的影响[J]. 材料工程, 2016, 44 (1): 47- 53.
9 LIU W H , HE Z T , TANG C P , et al. Effect of deformation condition on dynamic mechanical properties and microstructure evolution of 2519A aluminum alloy[J]. Journal of Materials Engineering, 2016, 44 (1): 47- 53.
10 LÖFFLER H , KOVÁCS I , LENDVAI J . Decomposition processes in Al-Zn-Mg alloys[J]. Journal of Materials Science, 1983, 18 (8): 2215- 2240.
doi: 10.1007/BF00541825
11 DANH N C , RAJAN K , WALLACE W . A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum[J]. Metallurgical Transactions A, 1983, 14 (9): 1843- 1850.
doi: 10.1007/BF02645554
12 KANNO M , ARAKI I , CUI Q . Precipitation behavior of 7000 alloys during retrogression and reaging treatment[J]. Materials Science and Technology, 1994, 10 (7): 599- 603.
doi: 10.1179/mst.1994.10.7.599
13 LI J F , BIRBILIS N , LI C X , et al. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150[J]. Materials Characterization, 2009, 60 (11): 1334- 1341.
doi: 10.1016/j.matchar.2009.06.007
14 李国峰, 张新明, 李鹏辉. 7050铝合金在回归加热过程中的组织演变规律[J]. 稀有金属材料与工程, 2011, 40 (7): 1295- 1299.
14 LI G F , ZHANG X M , LI P H . Microstructure evolution rules for aluminum alloy 7050 during retrogression heating up[J]. Rare Metal Materials and Engineering, 2011, 40 (7): 1295- 1299.
15 LI G F , ZHANG X M , LI P H , et al. Effects of retrogression heating rate on microstructures and mechanical properties of aluminum alloy 7050[J]. Transactions of Nonferrous Metals Society of China, 2010, 40 (7): 935- 941.
16 赵业青, 李岩, 鲁法云, 等. 7150铝合金热变形行为及微观组织[J]. 航空材料学报, 2015, 35 (3): 18- 23.
16 ZHAO Y Q , LI Y , LU F Y , et al. Flow stress behavior and microstructure of 7150 aluminum alloy during hot deformation[J]. Journal of Aeronautical Materials, 2015, 35 (3): 18- 23.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn