Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (12): 131-136    DOI: 10.11868/j.issn.1001-4381.2016.001032
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
回归时间对7150铝合金力学性能与组织的影响
张研1, 邓运来1,2, 范世通2, 龙涛2
1. 中南大学 轻合金研究院, 长沙 410083;
2. 中南大学 材料科学与工程学院, 长沙 410083
Influence of Retrogression Time on Mechanical Properties and Microstructure of 7150 Aluminum Alloy
ZHANG Yan1, DENG Yun-lai1,2, FAN Shi-tong2, LONG Tao2
1. Light Alloy Research Institute, Central South University, Changsha 410083, China;
2. School of Materials Science and Engineering, Central South University, Changsha 410083, China
全文: PDF(28968 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用硬度、常温拉伸、恒载荷拉伸、剥落腐蚀及透射电镜等方法研究回归时效时间对7150-T77铝合金性能和组织的影响。结果表明:随回归时效时间的延长,晶内η'相先回溶再重新析出η相,并不断粗化,导致合金最终力学性能先升高后降低,η'相回溶与η相析出的临界时间为30min,此时合金最终力学性能最高;晶界η相不断粗化且不连续,大幅提高合金的抗腐蚀性能;再时效阶段存在硬度峰值,且回归时效时间越长,达到硬度峰值时间越短。对比实验表明,较优的T77制度为105℃/17h+190℃/30min+120℃/23h,其抗拉强度(σb)、屈服强度(σ0.2)和伸长率(δ)分别为608,544MPa和10.4%,剥落腐蚀评级为EA级,恒载荷实验中抗拉强度和伸长率损失分别为4.9%和5.0%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张研
邓运来
范世通
龙涛
关键词 7150铝合金三级时效回归时间力学性能微观组织    
Abstract:The influence of the retrogression time on properties and microstructure of 7150-T77 aluminum alloy was studied by hardness testing, tensile property testing, exfoliation corrosion test and TEM. Results indicate that the matrix precipitated η' phase re-dissolves first, and then η phase re-precipitates and becomes coarsened with the extending of retrogression time. The ultimate mechanical properties increase first then decrease as retrogression time increases. The critical time of the η' phase re-dissolution and the η phase precipitation is 30min, At this point, alloys have the highest ultimate mechanical properties, and the grain boundary precipitated η phase becomes coarsened and discontinuous, leading to lower mechanical properties and better corrosion resistance, peak hardness exists at re-aging stage. With the retrogression time extending, the time for the alloy to reach the peak hardness becomes shorter. Optimal T77 aging treatment is 105℃/17h+190℃/30min+120℃/23h. With this treatment, the ultimate tensile strength (σb), yield strength (σ0.2) and elongation (δ) are 608,544MPa and 10.4%, respectively, the exfoliation corrosion test gets EA level, the σb and δ loss in constant loading tensile testing is 4.9% and 5.0%, respectively.
Key words7150 aluminum alloy    three-step aging    retrogression time    mechanical property    microstructure
收稿日期: 2016-08-31      出版日期: 2018-12-18
中图分类号:  TG146.2+1  
通讯作者: 邓运来(1969-),男,博士,教授,博士生导师,从事轻合金加工以及工艺方面的研究,联系地址:湖南省长沙市麓山南路932号中南大学化工楼材料科学与工程学院(410083),E-mail:luckydeng@mail.csu.edu.cn     E-mail: luckydeng@mail.csu.edu.cn
引用本文:   
张研, 邓运来, 范世通, 龙涛. 回归时间对7150铝合金力学性能与组织的影响[J]. 材料工程, 2018, 46(12): 131-136.
ZHANG Yan, DENG Yun-lai, FAN Shi-tong, LONG Tao. Influence of Retrogression Time on Mechanical Properties and Microstructure of 7150 Aluminum Alloy. Journal of Materials Engineering, 2018, 46(12): 131-136.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001032      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/131
[1] 方华婵,陈康华,巢宏,等.Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程,2009,14(6):351-358. FANG H C,CHEN K H,CHAO H,et al.Current research status and prospects of ultra strength Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy,2009,14(6):351-358.
[2] 何正林, 高文理, 陆政,等. 热处理对7A85铝合金组织和性能的影响[J]. 材料工程, 2015, 43(8):13-18. HE Z L,GAO W L,LU Z,et al. Effects of heat treatment on microstructure and properties of 7A85 aluminum alloy[J]. Journal of Materials Engineering,2015,43(8):13-18.
[3] PARK J K,ARDELL A J.Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651[J]. Metallurgical and Materials Transactions A,1984,15(8):1531-1543.
[4] 郑子樵,李红英,莫志民.一种7055型铝合金的RRA处理[J].中国有色金属学报,2001,11(5):771-776. ZHENG Z Q,LI H Y,MO Z M.Retrogression and reaging treatment of a 7055 type aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2001,11(5):771-776.
[5] 韩小磊, 熊柏青, 张永安, 等. 欠时效态7150合金的高温回归时效行为[J]. 中国有色金属学报,2011, 21(1):80-87. HAN X L, XIONG B Q, ZHANG Y A, et al. High-temperature retrogression behavior of under-aged 7150 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(1):80-87.
[6] 张新明, 李鹏辉, 刘胜胆,等. 回归时间对7050铝合金晶间腐蚀性能的影响[J]. 中国有色金属学报,2008, 18(10):1795-1801. ZHANG X M,LI P H,LIU S D,et al. Effect of retrogression time on intergranular corrosion of 7050 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2008,18(10):1795-1801.
[7] 曾渝, 尹志民, 朱远志,等. RRA处理对超高强铝合金微观组织与性能的影响[J]. 中国有色金属学报,2004, 14(7):1188-1194. ZENG Y, YIN Z M, ZHU Y Z, et al. Effect of RRA on microstructure and properties of new type ultra high strength aluminum alloy[J]. The Chinese Journal of Nonferrous Metals,2004,14(7):1188-1194.
[8] CINA B M.Reducing the susceptibility of alloys,particularly aluminum alloys,to stress corrosion cracking:US 3856584[P].1974-12-24.
[9] 刘文辉,何圳涛,唐昌平,等.变形条件对2519A铝合金动态力学性能与组织演化的影响[J].材料工程, 2016, 44(1):47-53. LIU W H,HE Z T,TANG C P,et al. Effect of deformation condition on dynamic mechanical properties and microstructure evolution of 2519A aluminum alloy[J]. Journal of Materials Engineering,2016,44(1):47-53.
[10] LÖFFLER H,KOVÁCS I,LENDVAI J.Decomposition processes in Al-Zn-Mg alloys[J].Journal of Materials Science,1983,18(8):2215-2240.
[11] DANH N C,RAJAN K,WALLACE W.A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum[J]. Metallurgical Transactions A,1983,14(9):1843-1850.
[12] KANNO M,ARAKI I,CUI Q.Precipitation behavior of 7000 alloys during retrogression and reaging treatment[J]. Materials Science and Technology,1994,10(7):599-603.
[13] LI J F,BIRBILIS N,LI C X,et al.Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150[J]. Materials Characterization, 2009,60(11):1334-1341.
[14] 李国峰, 张新明, 李鹏辉. 7050铝合金在回归加热过程中的组织演变规律[J]. 稀有金属材料与工程, 2011, 40(7):1295-1299. LI G F, ZHANG X M, LI P H. Microstructure evolution rules for aluminum alloy 7050 during retrogression heating up[J]. Rare Metal Materials and Engineering,2011,40(7):1295-1299.
[15] LI G F, ZHANG X M, LI P H, et al. Effects of retrogression heating rate on microstructures and mechanical properties of aluminum alloy 7050[J]. Transactions of Nonferrous Metals Society of China,2010,40(7):935-941.
[16] 赵业青,李岩,鲁法云,等.7150铝合金热变形行为及微观组织[J].航空材料学报,2015,35(3):18-23. ZHAO Y Q,LI Y,LU F Y,et al.Flow stress behavior and microstructure of 7150 aluminum alloy during hot deformation[J].Journal of Aeronautical Materials,2015,35(3):18-23.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[7] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[8] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[13] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[14] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[15] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn