Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (1): 77-83    DOI: 10.11868/j.issn.1001-4381.2017.000346
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热塑性复合材料自动铺放过程中红外加热技术研究
宋清华1,*(), 刘卫平1, 肖军2, 陈萍1, 杨洋1, 陈吉平1
1 上海飞机制造有限公司, 上海 201324
2 南京航空航天大学 材料科学与技术学院, 南京 210016
Infrared heating system based on automated fiber placement for thermoplastic composites
Qing-hua SONG1,*(), Wei-ping LIU1, Jun XIAO2, Ping CHEN1, Yang YANG1, Ji-ping CHEN1
1 Shanghai Aircraft Manufacturing Co., Ltd., Shanghai 201324, China
2 College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(3308 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为保证热塑性预浸料树脂基体在自动铺放(automated fiber placement,AFP)过程中充分熔融,实现热塑性复合材料(thermoplastic composites,TPC)逐层"原位固结"成型,自动铺放成型过程中需精确控制预浸料的加热温度。针对自动铺放过程中铺放速率会在较大范围内变动的特点,本工作提出一种高速率响应的红外线辐射加热技术。通过对红外热源与铺层间能量传输过程的分析,提出红外加热过程中动态恒温控制方程,建立热源辐射强度与铺放速率之间的匹配关系。基于热塑性复合材料自动铺放实验平台,构建红外加热恒温控制系统,该系统采用前馈控制方式,根据动态恒温控制方程,制定相应控制策略,实现对预浸料加热过程中温度的精确控制。实验结果表明自动铺放过程中使用红外加热恒温控制系统满足变速工况下恒温加热要求,且铺放成型实验件的压缩强度及层间剪切强度均接近模压成型实验件。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋清华
刘卫平
肖军
陈萍
杨洋
陈吉平
关键词 热塑性复合材料自动铺放红外加热前馈控制原位固结    
Abstract

In order to ensure the full melting of the thermoplastic composites (TPC) prepreg in the process of automated fiber placement (AFP) and offer the potential to realize the in-situ consolidation for TPC, it is necessary to control the temperature of the prepreg in AFP. Aiming at the processing speed will be changed within the larger scope, an infrared heating technology with fast response rate and efficient was proposed. Based on the analysis of the heat transfer process between the infrared heat source and the layers, the control equation of dynamic temperature was put forward and the matching relationship between the radiation intensity and laying speed was established. Based on the AFP platform, the infrared heating system which adopts the feedforward control method was constructed and the corresponding control strategy was formulated according to the dynamic thermostatic control equation to realize the heating temperature of prepreg controlled accurately. The experiment results show that the infrared heating thermostatic control system can meet the requirement of dynamic thermostatic control in the condition of variable speed and the compressive strength and the interlaminar shear strength for AFP component are closed to the moulded component.

Key wordsthermoplastic composites    automated fiber placement    infrared heating    feedforward control    in-situ consolidation
收稿日期: 2017-03-06      出版日期: 2019-01-16
中图分类号:  TB332  
  V261  
基金资助:上海飞机制造有限公司创新基金(F-CXKT-0155);上海自然科学基金(17ZR14118001)
通讯作者: 宋清华     E-mail: songqinghua@comac.cc
作者简介: 宋清华(1987-), 男, 博士后, 研究方向:连续纤维增强热塑性复合材料自动铺放原位成型技术, 联系地址:上海市浦东新区祝桥镇上飞路919号上海飞机制造有限公司(201324), E-mail:songqinghua@comac.cc
引用本文:   
宋清华, 刘卫平, 肖军, 陈萍, 杨洋, 陈吉平. 热塑性复合材料自动铺放过程中红外加热技术研究[J]. 材料工程, 2019, 47(1): 77-83.
Qing-hua SONG, Wei-ping LIU, Jun XIAO, Ping CHEN, Yang YANG, Ji-ping CHEN. Infrared heating system based on automated fiber placement for thermoplastic composites. Journal of Materials Engineering, 2019, 47(1): 77-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000346      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/77
Fig.1  自动铺放红外加热系统示意图
Fig.2  管式红外灯结构图
Fig.3  红外加热控制系统原理图
Fig.4  编码器测速示意图
Fig.5  加热功率与输入电压的关系
Fig.6  热塑性复合材料自动铺放红外加热系统
(a)热塑性复合材料自动铺放实验平台; (b)红外加热控制系统
Fig.7  温度采集系统原理图
Fig.8  控制系数与黏合点温度的关系曲线
Fig.9  红外加热温度采集过程
Fig.10  热电偶峰值温度显示
Fig.11  不同铺放速率下热电偶峰值温度
Fig.12  热成像仪测量铺放过程中黏合区域的温度
Fig.13  自动铺放成型玻璃纤维增强聚丙烯复合材料平板实验件
1 宋清华, 肖军, 文立伟, 等. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46 (4): 120- 126.
1 SONG Q H , XIAO J , WEN L W , et al. Non-isothermal crystallization kinetics of thermoplastic composite for automated fiber placement[J]. Journal of Materials Engineering, 2018, 46 (4): 120- 126.
2 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2017, 46 (1): 83- 91.
2 SONG Q H , XIAO J , WEN L W , et al. Temperature field during automated fiber placement for thermoplastic composite[J]. Journal of Materials Engineering, 2017, 46 (1): 83- 91.
3 富宏亚, 李玥华. 热塑性复合材料纤维铺放技术研究进展[J]. 航空制造技术, 2012, (18): 44- 48.
doi: 10.3969/j.issn.1671-833X.2012.18.005
3 FU H Y , LI Y H . Research on thermoplastic composites fiber placement technology[J]. Aeronautical Manufacturing Technology, 2012, (18): 44- 48.
doi: 10.3969/j.issn.1671-833X.2012.18.005
4 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011, (2): 44- 47.
doi: 10.3969/j.issn.1003-6423.2011.02.011
4 WANG X G , YU Y , LI S M , et al. The research on fiber reinforced thermoplastic composites[J]. Fiber Composites, 2011, (2): 44- 47.
doi: 10.3969/j.issn.1003-6423.2011.02.011
5 韩振宇, 李玥华, 富宏亚, 等. 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012, (2): 91- 96.
doi: 10.3969/j.issn.1001-4381.2012.02.020
5 HAN Z Y , LI Y H , FU H Y , et al. Thermoplastic composites fiber placement process research[J]. Journal of Materials Engineering, 2012, (2): 91- 96.
doi: 10.3969/j.issn.1001-4381.2012.02.020
6 余永波, 文立伟, 肖军, 等. 自动铺带中红外加热技术研究[J]. 航空学报, 2011, 32 (6): 1124- 1131.
6 YU Y B , WEN L W , XIAO J , et al. Study of infrared heating technology in automatic tape-laying[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32 (6): 1124- 1131.
7 PITCHUMANI R , GILLESPIE J W , LAMONTIA M A , et al. Design and optimization of a thermoplastic tow placement process with in situ consolidation[J]. Journal of Composites Materials, 1997, 31 (3): 244- 275.
doi: 10.1177/002199839703100302
8 BUIJS J A H M , NEDERVEEN P J . A study of consolidation in filament winding with thermoplastic prepregs[J]. Journal of Thermoplastic Composites Materials, 1992, 5 (4): 276- 286.
doi: 10.1177/089270579200500401
9 SONMEZ F O , AKBULUT M . Process optimization of tape placement for thermoplastic composites[J]. Composites Part A, 2007, 38 (9): 2013- 2023.
doi: 10.1016/j.compositesa.2007.05.003
10 HEIDER D , PIOVOSO M J , GILLESPIE J W . A neural network model-based open-loop optimization for the automated thermoplastic composites tow-placement system[J]. Composites Part A, 2003, 34 (8): 791- 799.
doi: 10.1016/S1359-835X(03)00120-9
11 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动纤维铺放装备技术[J]. 复合材料学报, 2016, 33 (6): 1214- 1222.
11 SONG Q H , XIAO J , WEN L W , et al. Automated fiber placement system technology for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2016, 33 (6): 1214- 1222.
12 刘守文, 裴一飞, 孙来燕. 航天器真空热实验用红外灯光谱分布研究[J]. 宇航学报, 2010, 31 (1): 254- 258.
doi: 10.3873/j.issn.1000-1328.2010.01.042
12 LIU S W , PEI Y F , SUN L Y . Research on spectral pattern of infrared lamp for thermal vacuum test of spacecraft[J]. Journal of Astronautics, 2010, 31 (1): 254- 258.
doi: 10.3873/j.issn.1000-1328.2010.01.042
13 郭开波, 陈立平, 史玉升, 等. 选择性激光烧结设备管式辐射加热数值建模与计算[J]. 中国机械工程, 2009, 20 (8): 996- 999.
doi: 10.3321/j.issn:1004-132X.2009.08.026
13 GUO K B , CHEN L P , SHI Y S , et al. Numerical modeling and calculation for tubular radiation heater of SLS system[J]. China Mechanical Engineering, 2009, 20 (8): 996- 999.
doi: 10.3321/j.issn:1004-132X.2009.08.026
14 郭一楠, 常俊林, 赵峻, 等. 过程控制系统[M]. 北京: 机械工业出版社, 2009: 176- 218.
14 GUO Y N , CHANG J L , ZHAO J , et al. Process controlling system[M]. Beijing: China Machine Press, 2009: 176- 218.
15 宋清华, 肖军, 文立伟, 等. 模压工艺对玻璃纤维增强聚丙烯复合材料层合板力学性能的影响[J]. 复合材料学报, 2016, 33 (12): 342- 350.
15 SONG Q H , XIAO J , WEN L W , et al. Influence of molding press on mechanical properties of glass fiber reinforced polypropylene composites[J]. Acta Materiae Compositae Sinica, 2016, 33 (12): 342- 350.
[1] 滕凌虹, 曹伟伟, 朱波, 秦溶蔓. 纤维增强热塑性树脂预浸料的制备工艺及研究进展[J]. 材料工程, 2021, 49(2): 42-53.
[2] 吴旺青, 刘毅, 向阳辉, 付继先. 环形对苯二甲酸丁二醇酯与催化剂混合体系的流变性能[J]. 材料工程, 2019, 47(10): 154-159.
[3] 宋清华, 肖军, 文立伟, 王显峰, 赵聪, 褚奇奕. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4): 120-126.
[4] 宋清华, 肖军, 文立伟, 王显峰, 范珏雯, 石甲琪. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1): 83-91.
[5] 韩振宇, 孙守政, 付云忠, 富宏亚. 热塑性FRP自动铺放成型缺陷的多尺度研究进展[J]. 材料工程, 2017, 45(7): 118-127.
[6] 韩振宇,李玥华, 富宏亚, 邵忠喜. 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012, 0(2): 91-96.
[7] 杨璧玲, 张慧萍, 张同华, 庄兴民, 晏雄. 含材料非线性的热塑性聚乙烯自增强复合材料逐渐损伤分析[J]. 材料工程, 2009, 0(11): 65-68,98.
[8] 李元珍, 袁立, 纪双英. 碳纤维织物/PEEK热塑性树脂基复合材料光学反射镜研究[J]. 材料工程, 2006, 0(6): 17-19,66.
[9] 秦明, 益小苏. 可控交联聚芳醚酮热塑性复合材料的制备及电子束辐照对其结构和性能的影响[J]. 材料工程, 2004, 0(2): 18-21,25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn