Abstract:Compatibilization of immiscible polymer blends is by far the most general and efficient strategy to convert multiphase polymer blends with poor miscibility into high performance polymer alloys. The concept and necessity of compatibilization of immiscible polymer blends were analyzed. Various compatibilization methods were introduced to improve the miscibility of polymer blends, including the addition of block or graft copolymers, reactive polymers, low molecular weight chemical compound and functionalized nanoparticles, etc. In addition, the development of compatibilization methods was reviewed and the effect of compatibilization on the phase morphology and final properties of the blends was discussed, such as mechanical properties, thermal properties, electrical properties, etc. Finally, it was proposed that nanoparticle compatibilization will become a popular method in the field of blend compatibilization. This method not only can increase the capacity, but also increase the mechanical strength and possibly bring new properties to the blend.
马鹏飞, 王鑫, 李栋辉, 游峰, 江学良, 姚楚. 聚合物共混物增容技术及发展[J]. 材料工程, 2019, 47(2): 26-33.
MA Peng-fei, WANG Xin, LI Dong-hui, YOU Feng, JIANG Xue-liang, YAO Chu. Progress of compatibilization methods in polymer blends. Journal of Materials Engineering, 2019, 47(2): 26-33.
[1] PAUL D R, BARLOW J W. Polymer blends[J].Polymer Reviews, 1980, 18(1):109-168.
[2] IMRE B, PUKÁNSZKY B. Compatibilization in bio-based and biodegradable polymer blends[J].European Polymer Journal, 2013, 49(6):1215-1233.
[3] GAO C, ZHANG S, LI X, et al. Synthesis of poly(ether ether ketone)-block-polyimide copolymer and its compatibilization for poly(ether ether ketone)/thermoplastic polyimide blends[J].Polymer, 2013, 55(1):119-125.
[4] CHANG K H, ROBERTSON M L, HILLMYER M A. Phase Inversion in polylactide/soybean oil blends compatibilized by poly(isoprene-b-lactide) block copolymers[J].ACS Appl Mater Interfaces, 2009, 1(10):2390-2399.
[5] EAGAN J M, XU J, GIROLAMO R D, et al. Combining polyethylene and polypropylene:enhanced performance with PE/IPP multiblock polymers[J].Science, 2017, 355(6327):814-816.
[6] ULCNIK-KRUMP M. Study of morphology influence on rheological properties of compatibilized TPU/SAN blends[J].Journal of Applied Polymer Science, 2006, 100(3):2303-2316.
[7] ZHANG C L, FENG L F, GU X P, et al. Blend composition dependence of the compatibilizing efficiency of graft copolymers for immiscible polymer blends[J].Polymer Engineering & Science, 2010, 50(11):2243-2251.
[8] LYATSKAYA Y, JACOBSON S H, BALAZS A C. Effect of composition on the compatibilizing activity of comb copolymers[J].Macromolecules, 1996, 29(3):1059-1061.
[9] KVIST L, BERTILSSON H, MEULLER P. Poly(styrene-g-ethylene oxide) copolymers as interfacial agents in immiscible polymer blends[J].Polymer Engineering & Science, 1998, 38(8):1303-1312.
[10] ZHANG N, WANG Q, REN J, et al. Preparation and properties of biodegradable poly(lactic acid)/poly(butylene adipate-co -terephthalate) blend with glycidyl methacrylate as reactive processing agent[J].Journal of Materials Science, 2009, 44(1):250-256.
[11] CHEN R, JIANG X, YOU F, et al. Optimizing the morphology, mechanical and crystal properties of in-situ polypropylene/polystyrene blends by reactive extrusion[J].Fibers & Polymers, 2016, 17(10):1550-1557.
[12] PARAMESWARANPILLAI J, JOSEPH G, CHELLAPPAN R V, et al. The Effect of polypropylene-graft-maleic anhydride on the morphology and dynamic mechanical properties of polypropylene/polystyrene blends[J].Journal of Polymer Research, 2015, 22(2):1-11.
[13] ZHU Y L, LIANG C S, BO Y, et al. Compatibilization of polypropylene/recycled polyethylene terephthalate blends with maleic anhydride grafted polypropylene in the presence of diallyl phthalate[J].Journal of Polymer Research, 2015, 22(3):1-12.
[14] WU M, WU Z, WANG K, et al. Simultaneous the thermodynamics favorable compatibility and morphology to achieve excellent comprehensive mechanics in PLA/OBC blend[J].Polymer, 2014, 55(24):6409-6417.
[15] ZHANG Y, LI Y T, ZHAO S F, et al. Compatibility effect of radiation-grafting-functionalized styrene-butadiene-styrene on polyamide 6/styrene-butadiene-styrene blends[J].Journal of Applied Polymer Science, 2008, 108(2):1029-1036.
[16] ZAMAN H U, SONG J C, PARK L S, et al. Poly(lactic acid) blends with desired end-use properties by addition of thermoplastic polyester elastomer and MDI[J].Polymer Bulletin, 2011, 67(1):187-198.
[17] MA P, CAI X, ZHANG Y, et al. In-situ compatibilization of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by using dicumyl peroxide as a free-radical initiator[J].Polymer Degradation & Stability, 2014, 102(2):145-151.
[18] LI P, HUANG Y, KONG M, et al. Fractionated crystallization and morphology of PP/PS blends in the presence of silica nanoparticles with different surface chemistries[J].Colloid and Polymer Science, 2013, 291(7):1693-1704.
[19] WANG H, FU Z, ZHAO X, et al. Reactive nanoparticles compatibilized immiscible polymer blends:synthesis of reactive SiO2 with long pmma chains and the in-situ formation of janus nanoparticles anchored exclusively at the interface[J]. ACS Applied Materials & Interfaces,2017, 9(16):14358-14370.
[20] FERN NDEZROSAS E, VILAR G, JANER G, et al. Influence of nanomaterials compatibilization strategies in polyamide nanocomposite properties and nanomaterials release during the use phase[J].Environmental Science & Technology, 2016, 50(5):2584.
[21] LI W, KARGER-KOCSIS J, SCHLARB A K. Dispersion of TiO2 particles in PET/PP/TiO2 and PET/PP/PP -g-MA/TiO2 composites prepared with different blending procedures[J].Macromolecular Materials & Engineering, 2009, 294(9):582-589.
[22] PANDA B P, MOHANTY S, NAYAK S K, et al. Fracture Study of modified TiO2 reinforced PP/EPDM composite:mechanical behavior and effect of compatibilization[J].International Journal of Plastics Technology, 2012, 16(1):89-100.
[23] SUN N, WANG T, LIU C. Preparation, characterization and photocatalytic study of wood-flour/β -cyclodextrin/TiO2 hybrid composite[J].Wood Science & Technology, 2016, 50(6):1-18.
[24] KOOSHKI R M, GHASEMI I, KARRABI M, et al. Nanocomposites based on polycarbonate/poly (butylene terephthalate) blends effects of distribution and type of nanoclay on morphological behavior[J].Journal of Vinyl & Additive Technology, 2013, 19(3):203-212.
[25] MOMEN O, MEHRABI-MAZIDI M, JAHANGIRI N. Isotactic polypropylene (PP) modified by abs and CaCO3 nanoparticles:effect of composition and compatibilization on the phase morphology, mechanical properties and fracture behavior[J].Polymer Bulletin, 2015, 72(11):2757-2782.
[26] SHOKRIAN M D, SHELESHNEZHAD K H, SOUDMAND B. Numerical simulation of hybrid nanocomposite containing CaCO3 and short glass fiber subjected to tensile loading[J]. Mechanics of Advanced Composite Structures,2017, 4(2):117-125
[27] POUR S A H, POURABBAS B, HOSSEINI M S. Electrical and rheological properties of PMMA/LDPE blends filled with carbon black[J].Materials Chemistry & Physics, 2014, 143(2):830-837.
[28] MATHEW T, DATTA R N, DIERKES W K, et al. Plasma polymerization surface modification of carbon black and its effect in elastomers[J].Macromolecular Materials & Engineering, 2011, 296(1):42-52.
[29] XU C, TAN Y, SONG Y, et al. Influences of compatibilization and compounding process on electrical conduction and thermal stabilities of carbon black-filled immiscible polypropylene/polystyrene blends[J].Polymer International, 2013, 62(2):238-245.
[30] BAUDOUIN A C, BAILLY C, DEVAUX J. Interface localization of carbon nanotubes in blends of two copolymers[J].Polymer Degradation & Stability, 2010, 95(3):389-398.
[31] BAUDOUIN A C, DEVAUX J, BAILLY C. Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer[J].Polymer, 2010, 51(6):1341-1354.
[32] WU D, LIN D, ZHANG J, et al. Selective localization of nanofillers:effect on morphology and crystallization of PLA/PCL blends[J].Macromolecular Chemistry & Physics, 2011, 212(6):613-626.
[33] TONG J, HUANG H X, WU M. Promoting compatibilization effect of graphene oxide on immiscible PS/PVDF blend via water-assisted mixing extrusion[J].Composites Science & Technology, 2017, 149(8):286-293.
[34] YANG J, FENG C, DAI J, et al. Compatibilization of immiscible nylon 6/poly(vinylidene fluoride) blends using graphene oxides[J].Polymer International, 2012, 62(7):1085-1093.
[35] YOU F, WANG D, CAO J, et al. In situ thermal reduction of graphene oxide in a styrene-ethylene/butylene-styrene triblock copolymer via melt blending[J].Polymer International, 2013, 63(1):93-99.
[36] LI W, KARGER-KOCSIS J, THOMANN R. Compatibilization effect of TiO2 nanoparticles on the phase structure of PET/PP/TiO2 nanocomposites[J].Journal of Polymer Science Part B:Polymer Physics, 2009, 47(16):1616-1624.
[37] ELIAS L, FENOUILLOT F, MAJESTE J C, et al. Morphology and rheology of immiscible polymer blends filled with silica nanoparticles[J].Polymer, 2007, 48(20):6029-6040.
[38] HEMMATI F, GARMABI H, MODARRESS H. Compatibilization mechanisms of nanoclays with different surface modifiers in ucst blends:opposing effects on phase miscibility[J].Polymer, 2014, 55(25):6623-6633.
[39] WANG S S, PANG S J, PAN L S, et al. Compatibilization of poly(lactic acid)/ethylene-propylene-diene rubber blends by using organic montmorillonite as a compatibilizer[J].Journal of Applied Polymer Science, 2016, 133(46):44192.
[40] KHARE R A, BHATTACHARYYA A R, KULKARNI A R, et al. Influence of multiwall carbon nanotubes on morphology and electrical conductivity of PP/ABS blends[J].Journal of Polymer Science Part B:Polymer Physics,2008,46(21):2286-2295.
[41] BAUDOUIN A C, AUHL D, TAO F, et al. Polymer blend emulsion stabilization using carbon nanotubes interfacial confinement[J].Polymer, 2011, 52(1):149-156.
[42] BHARATI A, CARDINAELS R, SEO J W, et al. Enhancing the conductivity of carbon nanotube filled blends by tuning their phase separated morphology with a copolymer[J].Polymer, 2015, 79:271-282.
[43] YE S, CAO Y, FENG J, et al. Temperature-dependent compatibilizing effect of graphene oxide as a compatibilizer for immiscible polymer blends[J].RSC Advances, 2013, 3(21):7987-7995.
[44] CAO Y, ZHANG J, FENG J, et al. Compatibilization of immiscible polymer blends using graphene oxide sheets[J].ACS Nano, 2011, 5(7):5920-5927.
[45] YANG J H, FENG C X, DAI J, et al. Compatibilization of immiscible nylon 6/poly(vinylidene fluoride) blends using graphene oxides[J].Polymer International, 2013, 62(7):1085-1093.
[46] WANG Y, LIU X, ZHANG Q, et al. Synthesis of a novel reactive compatibilizer with large surface area and the application in monomer casting nylon/polyethylene-octene elastomer blends[J].Journal of Materials Science, 2016, 51(21):9589-9601.
[47] 邢妍,张勇,张红梅. 氧化石墨烯增容尼龙6/聚苯乙烯共混体系的研究[J].高分子学报, 2015(6):706-712. XING Y,ZHANG Y,ZHANG H M.Compatibilizing effect of graphene oxide on polyamide 6/polystyrene blends[J].Acta Polymerica Sinica,2015(6):706-712.
[48] BALOGUN Y A, BUCHANAN R C. Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCS)[J].Composites Science and Technology, 2010, 70(6):892-900.
[49] PARK S, HE S Y, WANG J N, et al. Graphene-polyethylene nanocomposites:effect of graphene functionalization[J].Polymer, 2016, 104:1-9.
[50] YU A P, RAMESH P, SUN X B, et al. Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J].Advanced Materials, 2008, 20(24):4740-4744.
[51] WANG S R, TAMBRAPARNI M, QIU J J, et al. Thermal expansion of graphene composites[J].Macromolecules, 2009, 42(14):5251-5255.