Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (2): 68-75    DOI: 10.11868/j.issn.1001-4381.2017.001010
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于镀银纱线的电加热织物温度场模拟与电热性能
李雅芳, 刘皓(), 赵义侠
天津工业大学 纺织学院, 天津 300387
Electric heating fabrics based on silver yarns and simulation of temperature field
Ya-fang LI, Hao LIU(), Yi-xia ZHAO
College of Textile, Tianjin Polytechnic University, Tianjin 300387, China
全文: PDF(9119 KB)   HTML ( 15 )  
输出: BibTeX | EndNote (RIS)      
摘要 

运用ANSYS有限元模拟软件对镀银纱线在织物中加热过程进行数值模拟,并通过调整镀银纱线之间的距离和施加电压分析不同条件下加热织物内部和周围空气中热场分布情况。根据模拟结果制备镀银纱线加热织物,验证模拟结果并研究电加热织物电热性能。结果表明,随着电压的增加,镀银纱线平衡温度升高,当输出电压为7V时,镀银纱线在织物中实测温度可达109.7℃。设定镀银纱线间距为3mm,使镀银纱线在较低成本下获得较高的表面温度均匀性。加热织物的升温速度和平衡温度随着功率密度的增加而增加,模拟结果与实测结果趋势一致且结果偏差小于4.5%,说明有限元分析结果能够作为镀银纱线加热织物制备的重要参考依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雅芳
刘皓
赵义侠
关键词 有限元模拟镀银纱线柔性加热织物电热性能红外温度图像    
Abstract

ANSYS finite element simulation software was used to simulate the heating process of silver coated yarns in fabric. The thermal filed distribution of heating fabric in different condition was analyzed by adjusting the distance between the silver coated yarns and output voltage. The heating fabric was prepared by the results of finite element simulation. The electrical heating property of heating fabric was researched and contrast with the results of finite element simulation. The result shows that, the equilibrium temperature of silver coated yarns rise with the increase of output voltage. The temperature is 109.7℃ by the output voltage is 7V. The distance of silver coated yarn in fabric is 3mm, which makes the surface temperature of heating uniform while the cost of silver coated yarns is lower. The equilibrium temperature and the heating speed rise with the increase of power density. The results of simulation are consistent with the actual results and the deviation is less than 4.5%. The results of finite element simulation can be important reference to guide the fabrication of heating fabric based on silver coated yarns.

Key wordsfinite element simulation    silver coated yarn    flexible heating fabric    electric heating property    temperature infrared image
收稿日期: 2017-08-08      出版日期: 2019-02-21
中图分类号:  TS101.8  
基金资助:国家自然科学基金(51473122)
通讯作者: 刘皓     E-mail: liuhao_0760@163.com
作者简介: 刘皓(1978-), 男, 副教授, 博士, 研究方向为智能纺织品, 联系地址:天津市西青区宾水西道399号天津工业大学纺织学院楼E317(300387), E-mail:liuhao_0760@163.com
引用本文:   
李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
Ya-fang LI, Hao LIU, Yi-xia ZHAO. Electric heating fabrics based on silver yarns and simulation of temperature field. Journal of Materials Engineering, 2019, 47(2): 68-75.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001010      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/68
Fig.1  镀银纱线复合织物热学模型建立及网格划分
(a)纱线在织物中截面热量交换图;(b)镀银纱线在织物中截面几何模型;(c)镀银纱线在织物中加热的有限元模型及网格划分;(d)两根镀银纱线的有限元模型及网格划分;(e)加热织物有限元模型及网格划分
Fig.2  镀银纱线加热织物制备
(a)电路设计图;(b)在织物上画出镀银纱线排列;(c)加热织物
Fig.3  红外温度测试系统
Fig.4  镀银纱线周围热场温度随加热时间变化分布图
(a)0.1s;(b)0.5s;(c)1s;(d)10s;(e)20s;(f)100s
Fig.5  镀银纱线在不同输出电压下的温度分布图
(a)3V条件下样品的红外图像;(b)6V条件下样品的红外图像;(c)3V条件下样品的红外图像数值化处理;(d)6V条件下样品的红外图像数值化处理;(e)3V条件下样品的温度分布曲线;(f)6V条件下样品的温度分布曲线
Fig.6  施加不同电压镀银纱线在织物中平衡温度模拟和实际测试结果对比
Fig.7  镀银纱线间距对加热织物热场分布的影响
(a)1mm;(b)2mm;(c)3mm;(d)4mm;(e)5mm;(f)10mm
Fig.8  镀银纱线加热织物在不同电压下的温度分布图
(a)2V;(b)3V;(c)4V;(d)5V
Fig.9  加热织物热性能测试
(a)输出电压为5V时加热织物红外热像图;(b)输出电压为5V时加热织物三维温度图;(c)加热织物在不同输出电压下温度随时间变化图;(d)热织物功率密度与温度关系图
Voltage/V Simulation/℃ Measurement/℃ Deviation/%
1 22.8 23.0 0.8
2 27.6 28.1 1.8
3 35.8 37.4 4.5
4 46.7 45.1 -3.3
5 62.1 63.5 2.3
Table 1  加热织物在不同电压下的模拟平衡温度和实测结果
1 WANG F , GAO C , KUKLANE K , et al. A review of technology of personal heating garments[J]. International Journal of Occupational Safety & Ergonomics Jose, 2010, 16 (3): 387- 404.
2 CHUGH R , CHUNG D D L . Flexible graphite as a heating element[J]. Carbon, 2002, 40 (13): 2285- 2289.
doi: 10.1016/S0008-6223(02)00141-0
3 KAYACAN O , BULGUN E , SAHIN O . Implementation of steel-based fabric panels in a heated garment design[J]. Textile Research Journal, 2009, 79 (16): 1427- 1437.
doi: 10.1177/0040517508101458
4 DING J T F , TAO X , AU W M , et al. Temperature effect on the conductivity of knitted fabrics embedded with conducting yarns[J]. Textile Research Journal, 2014, 84 (17): 1849- 1857.
doi: 10.1177/0040517514530026
5 AN J E , JEONG Y G . Structure and electric heating performance of graphene/epoxy composite films[J]. European Polymer Journal, 2013, 49 (6): 1322- 1330.
doi: 10.1016/j.eurpolymj.2013.02.005
6 CHU K , PARK S H . Fabrication of a hybrid carbon-based composite for flexible heating element with a zero temperature coefficient of resistance[J]. IEEE Electron Device Letters, 2014, 36 (1): 50- 52.
7 BHAT N V , SESHADRI D T , NATE M M , et al. Development of conductive cotton fabrics for heating devices[J]. Journal of Applied Polymer Science, 2006, 102 (5): 4690- 4695.
doi: 10.1002/(ISSN)1097-4628
8 LEE J Y , DONG W P , LIM J O . Polypyrrole-coated woven fabric as a flexible surface-heating element[J]. Macromolecular Research, 2003, 11 (6): 481- 487.
doi: 10.1007/BF03218980
9 LI L , AU W M , DING F , et al. Wearable electronic design:electrothermal properties of conductive knitted fabrics[J]. Textile Research Journal, 2014, 84 (5): 477- 487.
doi: 10.1177/0040517513494254
10 CHEN H C , LEE K C , LIN J H , et al. Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation[J]. Journal of Materials Processing Tech, 2009, 184 (1): 124- 130.
11 CHENG K B , CHENG T W , LEE K C , et al. Effects of yarn constitutions and fabric specifications on electrical properties of hybrid woven fabrics[J]. Composites Part A Applied Science & Manufacturing, 2003, 34 (10): 971- 978.
12 张洪艳, 王海泉, 陈国华. 新型导电填料——纳米石墨微片[J]. 塑料, 2006, 35 (4): 42- 45.
doi: 10.3969/j.issn.1005-3360.2006.04.005
12 ZHANG H Y , WANG H Q , CHEN G H . A new kind of conducting filler-graphite nanosheets[J]. Plastics, 2006, 35 (4): 42- 45.
doi: 10.3969/j.issn.1005-3360.2006.04.005
13 杨景发, 郭建立, 李倩, 等. 板式电热膜加热元件的制备及应用[J]. 红外技术, 2011, 33 (11): 678- 681.
doi: 10.3969/j.issn.1001-8891.2011.11.014
13 YANG J F , GUO J L , LI Q , et al. Preparation and applications of plate electrothermal films[J]. Infrared Technology, 2011, 33 (11): 678- 681.
doi: 10.3969/j.issn.1001-8891.2011.11.014
14 BALTUŠNIKAITE J , VARNAITE-ŽURAVLIOVA S , RUBEŽIENE V , et al. Influence of silver coated yarn distribution on electrical and shielding properties of flax woven fabrics[J]. Fibres & Textiles in Eastern Europe, 2014, 22 (2): 84- 90.
15 施立佳, 张红霞. 嵌织镀银纤维涤纶织物的抗静电性能研究[J]. 浙江理工大学学报, 2009, 26 (6): 846- 849.
doi: 10.3969/j.issn.1673-3851.2009.06.004
15 SHI L J , ZHANG H X . Study on antistatic property of the embedded silver-plated fibers polyester fabric[J]. Journal of Zhejiang Sci-Tech University, 2009, 26 (6): 846- 849.
doi: 10.3969/j.issn.1673-3851.2009.06.004
16 POLLINI M , RUSSO M , LICCIULLI A , et al. Characterization of antibacterial silver coated yarns[J]. Journal of Materials Science Materials in Medicine, 2009, 20 (11): 2361- 2366.
doi: 10.1007/s10856-009-3796-z
17 陈莉, 刘皓, 周丽. 镀银长丝针织物的结构及其导电发热性能[J]. 纺织学报, 2013, 34 (10): 52- 56.
17 CHEN L , LIU H , ZHOU L . Analysis on silverplated filament knitted fabric knitting and electric heating performance[J]. Journal of Textile Research, 2013, 34 (10): 52- 56.
18 陈莉, 刘皓. 可加热纬编针织物的电热性能[J]. 纺织学报, 2015, 36 (4): 50- 54.
18 CHEN L , LIU H . Electric heating performance of heatable weft knitted fabric[J]. Journal of Textile Research, 2015, 36 (4): 50- 54.
19 HACHEM E , KLOCZKO T , DIGONNET H , et al. Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method[J]. International Journal for Numerical Methods in Fluids, 2015, 68 (1): 99- 121.
20 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45 (6): 1- 7.
doi: 10.3969/j.issn.1673-1433.2017.06.001
20 SUN Y D , CHEN Q R . Numerical simulation and experiment study on extrusion of AZ31 magnesium alloy tube[J]. Journal of Materials Engineering, 2017, 45 (6): 1- 7.
doi: 10.3969/j.issn.1673-1433.2017.06.001
21 曹海建, 陈红霞, 黄晓梅. 三维管状编织复合材料的弯曲性能研究[J]. 产业用纺织品, 2016, 34 (11): 10- 13.
doi: 10.3969/j.issn.1004-7093.2016.11.003
21 CAO H J , CHEN H X , HUANG X M . Study on flexural properties of three-dimensional tube[J]. Technical Textiles, 2016, 34 (11): 10- 13.
doi: 10.3969/j.issn.1004-7093.2016.11.003
[1] 李晓宇, 姜良宝, 刘家希, 王敏博, 李佳明, 颜悦. 化学强化铝硅酸盐玻璃表面微观力学行为的有限元模拟[J]. 材料工程, 2021, 49(7): 148-157.
[2] 赵家祥, 李建, 梁志鸿, 邱博, 阚前华. 超弹性NiTi合金率相关相变图案演化模拟[J]. 材料工程, 2021, 49(4): 102-110.
[3] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[4] 项瑶, 卢立伟, 吴木义, 马旻, 康伟, 刘欢, 唐伦圆. 6061铝合金膨胀-连续剪切变形行为[J]. 材料工程, 2020, 48(12): 111-118.
[5] 张景祺, 林健, 雷永平, 许海亮, 王细波. 316L超薄板激光焊接的失稳变形规律[J]. 材料工程, 2020, 48(12): 126-134.
[6] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[7] 董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
[8] 聂恒昌, 徐吉峰, 关志东, 黎增山, 王鑫. 复合材料胶接修理层合板拉伸性能及影响参数[J]. 材料工程, 2017, 45(10): 124-131.
[9] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[10] 王东宁, 李嘉禄, 焦亚男. 平纹织物三维细观几何模型和织物防弹实验的有限元模拟[J]. 材料工程, 2013, 0(9): 69-74,78.
[11] 任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程, 2013, 0(10): 13-19.
[12] 樊梦婷, 孙明月, 李殿中. 大型压力机模座热处理过程模拟及工艺优化[J]. 材料工程, 2011, 0(11): 44-50.
[13] 余琨, 蔡志勇, 王晓艳, 史褆, 黎文献. 半连续铸造AZ31B镁合金连续热轧变形行为的数值模拟[J]. 材料工程, 2010, 0(9): 33-39.
[14] 徐尊平, 程南璞, 陈志谦. 7050铝合金等通道转角挤压的有限元模拟及力学性能[J]. 材料工程, 2008, 0(8): 1-4.
[15] 雷力明, 黄旭, 段锐, 曹春晓. 模具外角对高纯铝60°内角等通道转角挤压变形影响的有限元模拟[J]. 材料工程, 2008, 0(8): 57-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn