ANSYS finite element simulation software was used to simulate the heating process of silver coated yarns in fabric. The thermal filed distribution of heating fabric in different condition was analyzed by adjusting the distance between the silver coated yarns and output voltage. The heating fabric was prepared by the results of finite element simulation. The electrical heating property of heating fabric was researched and contrast with the results of finite element simulation. The result shows that, the equilibrium temperature of silver coated yarns rise with the increase of output voltage. The temperature is 109.7℃ by the output voltage is 7V. The distance of silver coated yarn in fabric is 3mm, which makes the surface temperature of heating uniform while the cost of silver coated yarns is lower. The equilibrium temperature and the heating speed rise with the increase of power density. The results of simulation are consistent with the actual results and the deviation is less than 4.5%. The results of finite element simulation can be important reference to guide the fabrication of heating fabric based on silver coated yarns.
李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
Ya-fang LI, Hao LIU, Yi-xia ZHAO. Electric heating fabrics based on silver yarns and simulation of temperature field. Journal of Materials Engineering, 2019, 47(2): 68-75.
WANG F , GAO C , KUKLANE K , et al. A review of technology of personal heating garments[J]. International Journal of Occupational Safety & Ergonomics Jose, 2010, 16 (3): 387- 404.
2
CHUGH R , CHUNG D D L . Flexible graphite as a heating element[J]. Carbon, 2002, 40 (13): 2285- 2289.
doi: 10.1016/S0008-6223(02)00141-0
3
KAYACAN O , BULGUN E , SAHIN O . Implementation of steel-based fabric panels in a heated garment design[J]. Textile Research Journal, 2009, 79 (16): 1427- 1437.
doi: 10.1177/0040517508101458
4
DING J T F , TAO X , AU W M , et al. Temperature effect on the conductivity of knitted fabrics embedded with conducting yarns[J]. Textile Research Journal, 2014, 84 (17): 1849- 1857.
doi: 10.1177/0040517514530026
5
AN J E , JEONG Y G . Structure and electric heating performance of graphene/epoxy composite films[J]. European Polymer Journal, 2013, 49 (6): 1322- 1330.
doi: 10.1016/j.eurpolymj.2013.02.005
6
CHU K , PARK S H . Fabrication of a hybrid carbon-based composite for flexible heating element with a zero temperature coefficient of resistance[J]. IEEE Electron Device Letters, 2014, 36 (1): 50- 52.
7
BHAT N V , SESHADRI D T , NATE M M , et al. Development of conductive cotton fabrics for heating devices[J]. Journal of Applied Polymer Science, 2006, 102 (5): 4690- 4695.
doi: 10.1002/(ISSN)1097-4628
8
LEE J Y , DONG W P , LIM J O . Polypyrrole-coated woven fabric as a flexible surface-heating element[J]. Macromolecular Research, 2003, 11 (6): 481- 487.
doi: 10.1007/BF03218980
9
LI L , AU W M , DING F , et al. Wearable electronic design:electrothermal properties of conductive knitted fabrics[J]. Textile Research Journal, 2014, 84 (5): 477- 487.
doi: 10.1177/0040517513494254
10
CHEN H C , LEE K C , LIN J H , et al. Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation[J]. Journal of Materials Processing Tech, 2009, 184 (1): 124- 130.
11
CHENG K B , CHENG T W , LEE K C , et al. Effects of yarn constitutions and fabric specifications on electrical properties of hybrid woven fabrics[J]. Composites Part A Applied Science & Manufacturing, 2003, 34 (10): 971- 978.
ZHANG H Y , WANG H Q , CHEN G H . A new kind of conducting filler-graphite nanosheets[J]. Plastics, 2006, 35 (4): 42- 45.
doi: 10.3969/j.issn.1005-3360.2006.04.005
YANG J F , GUO J L , LI Q , et al. Preparation and applications of plate electrothermal films[J]. Infrared Technology, 2011, 33 (11): 678- 681.
doi: 10.3969/j.issn.1001-8891.2011.11.014
14
BALTUŠNIKAITE J , VARNAITE-ŽURAVLIOVA S , RUBEŽIENE V , et al. Influence of silver coated yarn distribution on electrical and shielding properties of flax woven fabrics[J]. Fibres & Textiles in Eastern Europe, 2014, 22 (2): 84- 90.
SHI L J , ZHANG H X . Study on antistatic property of the embedded silver-plated fibers polyester fabric[J]. Journal of Zhejiang Sci-Tech University, 2009, 26 (6): 846- 849.
doi: 10.3969/j.issn.1673-3851.2009.06.004
16
POLLINI M , RUSSO M , LICCIULLI A , et al. Characterization of antibacterial silver coated yarns[J]. Journal of Materials Science Materials in Medicine, 2009, 20 (11): 2361- 2366.
doi: 10.1007/s10856-009-3796-z
CHEN L , LIU H , ZHOU L . Analysis on silverplated filament knitted fabric knitting and electric heating performance[J]. Journal of Textile Research, 2013, 34 (10): 52- 56.
CHEN L , LIU H . Electric heating performance of heatable weft knitted fabric[J]. Journal of Textile Research, 2015, 36 (4): 50- 54.
19
HACHEM E , KLOCZKO T , DIGONNET H , et al. Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method[J]. International Journal for Numerical Methods in Fluids, 2015, 68 (1): 99- 121.
SUN Y D , CHEN Q R . Numerical simulation and experiment study on extrusion of AZ31 magnesium alloy tube[J]. Journal of Materials Engineering, 2017, 45 (6): 1- 7.
doi: 10.3969/j.issn.1673-1433.2017.06.001
CAO H J , CHEN H X , HUANG X M . Study on flexural properties of three-dimensional tube[J]. Technical Textiles, 2016, 34 (11): 10- 13.
doi: 10.3969/j.issn.1004-7093.2016.11.003