Please wait a minute...
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
闫智然1,2, 艾轶博1, 王祎旋1, 王煜3, 何峻3, 王海成1
1. 北京科技大学 国家材料服役安全科学中心, 北京 100083;
2. 北京科技大学 新金属材料国家重点实验室, 北京 100083;
3. 中国钢研科技集团有限公司 功能材料研究所, 北京 100081
Synthesis, modulation of electromagnetic properties of FeCo/PPy nanocomposites
YAN Zhi-ran1,2, AI Yi-bo1, WANG Yi-xuan1, WANG Yu3, HE Jun3, WANG Hai-cheng1
1. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China;
2. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
3. Institute of Function Materials, China Iron & Steel Research Institute Group, Beijing 100081, China
全文: PDF(7937 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为进一步改善电磁波吸收材料的阻抗匹配、提高吸收强度,本工作以液相还原法制备不同反应时间的FeCo磁性纳米颗粒,经表面修饰后通过原位氧化聚合,合成不同系列的FeCo/PPy纳米复合材料。结果表明,当FeCo反应时间为2h时,所合成的FeCo/PPy复合材料在14.45GHz、匹配厚度为2mm时最小反射损耗可达-38.19dB,有效带宽为5.45GHz(12.24~17.69GHz)。磁性纳米颗粒引入聚吡咯,有效降低了聚吡咯的复介电常数,优化了阻抗匹配,降低了对电磁波的反射;同时,在FeCo磁性纳米颗粒的磁损耗、PPy的介电损耗以及异质界面极化损耗等多重作用下,FeCo/PPy纳米复合材料对电磁波有着较好的吸收性能。
E-mail Alert
关键词 电磁波吸收磁性纳米颗粒导电聚合物纳米复合    
Abstract:In order to improve the impedance matching and wave absorption, FeCo magnetic nanoparticles with different reaction time were synthesized, and after being modified and in-situ oxidation polymerization, FeCo/PPy nanocomposites were prepared. Results show that the FeCo/PPy composites with FeCo nanoparticles which reaction time is 2h possess a maximum reflection loss (RL) value of -38.19dB at 14.45GHz and 2mm thickness with an effective absorption bandwidth (RL ≤ -10dB) of 5.45GHz (12.24-17.69GHz). The introduction of magnetic nanoparticles with polypyrrole can effectively decrease the complex permittivity and improve the impedance matching, which will reduce the reflection of electromagnetic wave. Meanwhile, the multimechanism of magnetic loss, dielectric loss and interface polarization loss, can prompt the absorption to the electromagnetic wave greatly.
Key wordselectromagnetic wave absorption    magnetic nanoparticle    conductive polymer    nanocomp-osites
收稿日期: 2018-03-20      出版日期: 2018-03-12
中图分类号:  TB34  
通讯作者: 王海成(1980-),男,副教授,博士,联系地址:北京市海淀区学院路30号北京科技大学国家材料服役安全科学中心(100083),     E-mail:
闫智然, 艾轶博, 王祎旋, 王煜, 何峻, 王海成. FeCo/PPy纳米复合材料的合成及其电磁性能调控[J]. 材料工程, 10.11868/j.issn.1001-4381.2018.000280.
YAN Zhi-ran, AI Yi-bo, WANG Yi-xuan, WANG Yu, HE Jun, WANG Hai-cheng. Synthesis, modulation of electromagnetic properties of FeCo/PPy nanocomposites. Journal of Materials Engineering, 2019, 47(3): 63-70.
链接本文:      或
[1] LIU Q H, CAO Q, BI H, et al. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption[J]. Adv Mater, 2016, 28:486-490.
[2] LIU Q H, CAO Q, ZHAO X B, et al. Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers-off-axis electron Holography[J]. ACS Appl Mater Interfaces, 2015, 7(7):4233-4240.
[3] KONG L, YIN X W, ZHANG Y J, et al. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters[J]. J Phys Chem C, 2013, 117(38):19701-19711.
[4] WANG T S, LIU Z H, LU M M, et al. Graphene-Fe3O4 nanohybrids:synthesis and excellent electromagnetic absorption properties[J]. J Appl Phys, 2013, 113(2):024314-1-8.
[5] FAN X A, GUAN J G, WANG W, et al. Morphology evolution, magnetic and microwave absorption properties of nano/submicr-ometre iron particles obtained at different reduced temperatures[J]. J Phys D:Appl Phys, 2009, 42:075006.
[6] LI J G, HUANG J J, QIN Y, et al. Magnetic and microwave properties of cobalt nanoplatelets[J]. Mater Sci Eng B, 2007, 138:199-204.
[7] TONG G X, DU F F, XIANG L J, et al. Generalized green synthesis and formation mechanism of sponge-like ferrite micro-polyhedra with tunable structure and composition[J]. Nanoscale, 2014, 6:778-787.
[8] HE S, WANG G S, LU C, et al. Enhanced wave absorption of nanocomposites based on the synthesized complex symmetrical CuS nanostructure and poly(vinylidene fluoride)[J]. J Mater Chem A, 2013, 1(15):4685-4692.
[9] WANG H C, XIANG L, WEI W, et al. Efficient and lightweight electromagnetic wave absorber derived from metal organic frameworks encapsulated cobalt nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(48):42102-42110.
[10] 礼嵩明,蒋诗才,望咏林,等. "超材料"结构吸波复合材料技术研究[J].材料工程,2017, 45(11):10-14. LI C M, JIANG S C, WANG Y L, et al. Study on "metam-aterials" structural absorbing composite technology[J]. Journal of Materials Engineering, 2017, 45(11):10-14
[11] WEN B, CAO M S, LU M M, et al. Reduced graphene oxides:light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures[J]. Adv Mater, 2014, 26:3484-3489.
[12] ZHAO B, ZHAO W, SHAO G, et al. Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids[J]. Dalton Trans, 2015, 44(36):15984-15993.
[13] SUI J H, ZHANG C, LI J, et al. Microwave absorption and catalytic activity of carbon nanotubes decorated with cobalt nanoparticles[J]. Mater Lett, 2012, 75:158-160.
[14] YAN L W, HONG C Q, SUN B Q, et al. In Situ growth of core-sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance[J]. ACS Appl Mater Interfaces, 2017, 9(7):6320-6331.
[15] WANG H, DAI Y Y, GENG D Y, et al. CoxNi100-x nanoparticles encapsulated by curved graphite layers:controlled in situ metal-catalytic preparation and broadband microwave absorption[J]. Nanoscale, 2015, 7:17312-17319.
[16] LU M M, CAO M S, CHEN Y H, et al. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes:a smart absorber prototype varying temperature to tune intensitie[J]. ACS Appl Mater Interfaces, 2015, 7:19408-19415.
[17] LI W Z, QIU T, WANG L L, et al. Preparation and electromagnetic properties of core/shell polystyrene@polypyrrole@nickel composite microspheres[J]. ACS Appl Mater Interfaces, 2013, 5(3):883-891.
[18] ZHANG B, DU Y C, ZHANG P, et al. Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness[J]. J Appl Polym Sci, 2013, 130(3):1909-1916.
[19] AKMAN O, KAVAS H, BAYKAL A, et al. Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber[J]. J Magn Magn Mater, 2013, 327:151-158.
[20] LIANG C Y, WANG Z J. Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation[J]. ACS Appl Mater Interfaces, 2017, 9(46):40690-40696.
[21] LIANG C Y, GOU Y J, WU L N, et al. Nature of electro-magnetic transparent SiO2 shell in hybrid nanostructure enhan-cing electromagnetic attenuation[J]. J Phys Chem C, 2016, 120:12967-12973.
[22] ZHAO H B, FU Z B, CHEN H B, et al. Excellent electromagnetic absorption capability of Ni/carbon Based conductive and magnetic foams synthesized via a green one pot route[J]. ACS Appl Mater Interfaces, 2016, 8(2):1468-1477.
[23] WANG H, DAI Y Y, GONG W J, et al. Broadband microwave absorption of CoNi@C nanocapsules enhanced by dual dielectric relaxation and multiple magnetic resonances[J]. Appl Phys Lett, 2013, 102:223113.
[24] LIANG C Y, LIU C Y, WANG H, et al. Si-C Fe3O4 dielectric-magnetic hybrid nanowires:controllable fabrication, character-ization and electromagnetic wave absorption[J]. J Mater Chem A, 2014, 2:16397-16402.
[25] WANG H C, MA N, YAN Z R, et al. Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties[J]. Nanoscale, 2015, 7(16):7189-7196.
[26] WANG H C, YAN Z R, AN J, et al. Iron cobalt/polypyrrole nanoplates with tunable broadband electromagnetic wave absorption[J]. RSC Advances, 2016, 6:92152-92158.
[27] LV H, LIANG X, JI G, et al. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties[J]. ACS Appl Materials Interfaces, 2015, 7(18):9776-9783.
[28] SHANG C, JI G, LIU W, et al. One-pot in situ molten salt synthesis of octahedral Fe3O4 for efficient microwave absorption application[J]. RSC Advances, 2015, 5(98):80450-80456.
[29] LI X, FENG J, DU Y, et al. One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber[J]. Journal of Materials Chemistry A, 2015, 3(10):5535-5546.
[1] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[2] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[3] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[4] 廖向娜, 贺雍律, 张鉴炜, 鞠苏, 江大志, 刘佳音, 刘钧. CNTs-纤维增强树脂基复合材料纳米-介观尺度数值模拟研究进展[J]. 材料工程, 2020, 48(12): 1-11.
[5] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[6] 赵亮, 李晓霞, 郭宇翔, 马德跃. 聚苯胺及其伪装应用研究进展[J]. 材料工程, 2019, 47(3): 42-49.
[7] 张宇, 黄峰, 马金瑞, 刘强, 孙煜. 羟基化处理对氮化硼膜耐原子氧性能的影响[J]. 材料工程, 2018, 46(7): 61-67.
[8] 王飞, 贾书海, 唐振华, 汪永林. 石墨烯纳米复合材料光驱动技术的研究进展[J]. 材料工程, 2018, 46(4): 12-22.
[9] 艾青, 杨灿星, 黄仁忠, 杨艳飞, 邹文祥, 袁颂东. 一种新型SnO2@BNNSs@C纳米复合结构及其电化学储能特性[J]. 材料工程, 2018, 46(11): 77-83.
[10] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[11] 毕波, 王学宝. 纳米碳材料在聚合物阻燃中的应用研究进展[J]. 材料工程, 2017, 45(5): 135-144.
[12] 魏红阳, 常萌蕾, 陈东初, 王梅丰, 叶秀芳. 太阳能吸收AAO复合氧化膜的制备与性能[J]. 材料工程, 2017, 45(11): 42-48.
[13] 陈阁谷, 关莹, 亓宪明, 彭锋, 姚春丽, 孙润仓. 聚合物/层状硅酸盐纳米复合材料阻燃性研究进展[J]. 材料工程, 2015, 43(8): 104-112.
[14] 张宗华, 刘刚, 张晖, 张忠, 王小群. 纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响[J]. 材料工程, 2014, 0(9): 39-44.
[15] 刘名涛, 钟喜春, 刘仲武, 曾德长, 李周, 张国庆. 等离子喷涂制备MoSi2-CoNiCrAlY纳米复合涂层的结构与性能[J]. 材料工程, 2014, 0(5): 17-22.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持