Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 116-122    DOI: 10.11868/j.issn.1001-4381.2018.000587
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
合金成分对Mg-Zn-Y合金准晶形貌和体积分数的影响
袁姣娜1,2,3, 王建利1,2,3, 杨忠1,2,3, 郭永春1,2,3, 李建平1,2,3
1. 西安工业大学 材料与化工学院, 西安 710021;
2. 陕西省镁铝轻合金复合材料工程研究中心, 西安 710021;
3. 陕西省光电功能材料与器件重点实验室, 西安 710021
Effect of alloy composition on morphology and volume fraction of quasi-crystalline of Mg-Zn-Y alloy
YUAN Jiao-na1,2,3, WANG Jian-li1,2,3, YANG Zhong1,2,3, GUO Yong-chun1,2,3, LI Jian-ping1,2,3
1. School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China;
2. Shaanxi Engineering Research Center of Mg/Al Light Metallic Alloys and Composites, Xi'an 710021, China;
3. Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, Xi'an 710021, China
全文: PDF(11108 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用铁模铸造法制备Zn/Y=6:1(原子比)的Mg-Zn-Y合金,通过XRD,SEM,EDS,TEM和DSC等研究合金成分对Mg-Zn-Y合金相组成、Mg3Zn6Y准晶相(准晶I相)形貌和体积分数的影响。结果表明:Mg-Zn-Y合金的相组成、准晶I相形貌、体积分数及其生成反应与合金成分密切相关。随着合金中Zn和Y元素含量的减少,准晶I相的形成反应由单一的包晶反应到包-共晶反应再到完全共晶反应。当合金中Y含量≥ 7%(原子分数,下同)时,合金由(Mg,Zn)5Y、准晶I相、Mg2Zn3和Mg7Zn3相组成,且以叠层状形式分布在合金组织中。合金在凝固过程中通过包晶反应形成多边形块状准晶I相;当Y含量<7%时,合金中除(Mg,Zn)5Y、准晶I相和Mg7Zn3相外,还析出了Mg相。当合金中Y含量在5%~7%时,准晶I相通过包晶和共晶反应生成,以共晶反应为主。当Y含量≤ 4%时,准晶I相完全通过共晶反应形成(Mg+I-phase)层片状共晶组织。所研究的合金中均生成了体积分数大于27%的准晶I相,Mg30Zn60Y10合金中准晶I相的体积分数最高,约为77%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁姣娜
王建利
杨忠
郭永春
李建平
关键词 Mg-Zn-Y合金准晶I相形貌体积分数准晶I相形成机理    
Abstract:Mg-Zn-Y alloys with a Zn/Y=6:1(atomic ratio) were prepared by steel mould casting method. The effect of alloy composition on phase constituents as well as the morphology, volume fraction of Mg3Zn6Y quasi-crystalline phase (quasi-crystalline I-phase) in Mg-Zn-Y alloys was investigated by XRD, SEM, EDS, TEM and DSC. Results show that the phase constituents, the morphology, volume fraction and formation mechanism of Mg3Zn6Y quasi-crystalline I-phase in the Mg-Zn-Y alloys are closely related to alloys' compositions. The formation reaction of quasi-crystalline I-phase is transferred from fully peritectic reaction to the combination of peritectic and eutectic reactions, and to completely eutectic reaction with the decrease of Zn and Y content in the alloys. When the Y content is and more than 7%(atom fraction), the alloys are composed of (Mg,Zn)5Y, quasi-crystalline I-phase, Mg2Zn3 and Mg7Zn3 phases and they are distributed in a layered form in the alloy, and the quasi-crystalline I-phase takes the polygonal form by peritectic reaction during solidification. When the Y content is less than 7%, Mg phase precipitates in the alloys and their microstructure consists of (Mg,Zn)5Y, quasi-crystalline I-phase, Mg7Zn3 and Mg phases. When the Y content is between 5% and 7%, the quasi-crystalline I-phase is precipitated by peritectic and eutectic reaction, and eutectic reaction, which dominates the precipitation of quasi-crystalline I-phase. When the Y content is and less than 4%, the quasi-crystalline I-phase forms totally a (Mg+I-phase) lamellar eutectic microstructure by eutectic reaction. The volume fraction of quasi-crystalline I-phase is all greater than 27%,and in Mg30Zn60Y10 alloy is the maximum (about 77%) among the studied alloys.
Key wordsMg-Zn-Y alloy    quasi-crystalline I-phase    morphology    volume fraction    formation mech-anism of quasi-crystalline I-phase
收稿日期: 2018-05-21      出版日期: 2019-03-12
中图分类号:  TG146.2+2  
通讯作者: 王建利(1981-),男,博士,教授,主要从事镁合金及其应用研究,联系地址:陕西省西安市未央区学府中路2号西安工业大学材料与化工学院(710021),E-mail:jlwang@xatu.edu.cn     E-mail: jlwang@xatu.edu.cn
引用本文:   
袁姣娜, 王建利, 杨忠, 郭永春, 李建平. 合金成分对Mg-Zn-Y合金准晶形貌和体积分数的影响[J]. 材料工程, 2019, 47(3): 116-122.
YUAN Jiao-na, WANG Jian-li, YANG Zhong, GUO Yong-chun, LI Jian-ping. Effect of alloy composition on morphology and volume fraction of quasi-crystalline of Mg-Zn-Y alloy. Journal of Materials Engineering, 2019, 47(3): 116-122.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000587      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/116
[1] 游国强,郭伟,张秀丽,等. 镁合金摩擦焊的研究进展[J]. 材料工程, 2018, 46(1):141-148. YOU G Q,GUO W,ZHANG X L,et al. Research progress in friction welding of magnesium alloy[J]. Journal of Materials Engineering, 2018, 46(1):141-148.
[2] XU Y, HU L X, SUN Y, et al. Microstructure and mechanical properties of AZ61 magnesium alloy prepared by repetitive upsetting-extrusion[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(2):381-388.
[3] 何阳,袁秋红,罗岚,等. 镁基复合材料研究进展及新思路[J]. 航空材料学报, 2018, 38(4):26-36. HE Y,YUAN Q H,LUO L,et al. Current study and novel ideas on magnesium matrix composites[J]. Journal of Aeronautical Materials, 2018, 38(4):26-36.
[4] LIU J F, YANG Z Q, YE H Q. In situ transmission electron microscopy investigation of quasicrystal-crystal transformations in Mg-Zn-Y alloys[J]. Journal of Alloys and Compounds, 2015, 621:179-188.
[5] ZHANG J S,ZHANG Y Q, ZHANG Y,et al. Effect of Mg-based spherical quasicrystal on microstructures and mechanical properties of ZA54 alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(7):1199-1204.
[6] 杜二玲. Mg-Zn-Y-Mn准晶中间合金对AZ31变形镁合金的晶粒细化研究[D]. 太原:太原理工大学, 2009. DU E L. Study of grain refinement of AZ31 wrought magnesium alloy by Mg-Zn-Y-Mn quasicrystal master alloy[D]. Taiyuan:Taiyuan University of Technology, 2009.
[7] 崔红卫. 准晶增强Mg-Zn-Y合金的塑性加工及组织形成[D]. 济南:山东大学, 2013. CUI H W. Plastical deformation and microstructure formation of icosahedral quasicrystalline reinforced Mg-Zn-Y alloys[D]. Jinan:Shandong University,2013.
[8] 卜志强,鲁若鹏,马军,等. 准晶I-相增强Mg-Zn-Y-Zr合金组织与力学性能研究[J]. 铸造技术, 2018,39(2):271-275. BU Z Q, LU R P, MA J, et al. Microstructures and mechanical properties of quasicrystal reinforced Mg-Zn-Y-Zr alloys[J]. Foundry Technology, 2018,39(2):271-275.
[9] 吴金珂. Mg-Zn-Y准晶增强镁基复合材料制备工艺与性能的研究[D]. 太原:中北大学, 2016. WU J K. Study on preparation of Mg-Zn-Y quasicrystal reinforced magnesium matrix composites[D]. Taiyuan:North University of China, 2016.
[10] 刘腾. Mg-Zn-Y准晶中间合金制备及其对AZ91合金性能的影响[D]. 济南:济南大学, 2012. LIU T. Preparation of Mg-Zn-Y quasicrystalline material and its strengthening behavior on AZ91 magnesium alloys[D]. Jinan:University of Jinan, 2012.
[11] 邹晋,陆德平,陆磊,等. 颗粒增强铝基复合材料热残余应力分析[J]. 粉末冶金工业, 2008, 18(6):27-31. ZOU J,LU D P,LU L,et al. Research of thermal residual stress in SiCp/Al composites[J]. Powder Metallurgy Industry,2008, 18(6):27-31.
[12] YANG L, HOU H, ZHAO Y H, et al. Microstructure and mechanical properties of squeeze casting quasicrystal reinforced AZ91D magnesium matrix composites[J]. Rare Metal Materials and Engineering,2016, 45(8):1978-1982.
[13] 史菲,郭学锋,张忠明. 准晶增强Mg95Zn4.3Y0.7合金ECAP变形组织分析[J]. 热加工工艺, 2010, 39(14):37-39. SHI F, GUO X F, ZHANG Z M. Study on microstructure of quasicrystal strengthened Mg95Zn4.3Y0.7 alloy produced by equal channel pressing[J]. Hot Working Technology, 2010, 39(14):37-39.
[14] 史菲,郭学锋,张忠明. 二十面体Zn6Mg3Y1对AZ91D镁合金性能的影响[J]. 热加工工艺, 2010, 39(16):27-30. SHI F, GUO X F, ZHANG Z M. Effect of I-Zn6Mg3Y1 on mechanical properties of AZ91D alloy[J]. Hot Working Technology, 2010, 39(16):27-30.
[15] BAE D H, KIM S H, KIM D H, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles[J]. Acta Materialia, 2002, 50(9):2343-2356.
[16] SINGH A,WATANABE M,KATO A,et al. Microstructure and strength of quasicrystal containing extruded Mg-Zn-Y alloys for elevated temperature application[J]. Materials Science and Engineering:A, 2004, 385(1/2):382-396.
[17] JU Y L, KIM D H, LIM H K, et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys[J]. Materials Letters, 2005, 59(29/30):3801-3805.
[18] TSAI A P, NⅡKURA A, INOUE A, et al. Stoichiometric icosahedral phase in Zn-Mg-Y system[J]. Journal of Materials Research, 1997, 12(6):1468-1471.
[19] 焦世辉. Mg-6Zn-1Y合金高压凝固组织及相演变[D]. 沈阳:东北大学, 2012. JIAO S H. Solidification microstructure and phases evolution in Mg-6Zn-1Y alloy solidified under high pressure[D]. Shenyang:Northeastern University, 2012.
[20] LANGSDORF A, RITTER F, ASSMUS W. Determination of the primary solidification area of the icosahedral phase in the ternary phase diagram of Zn-Mg-Y[J]. Philosophical Magazine Letters, 1997, 75(6):381-388.
[1] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[2] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 胶体纳米晶合成与形貌控制策略及机理[J]. 材料工程, 2020, 48(5): 23-30.
[3] 熊伟腾, 王云英, 范金娟, 肖淑华. 非定向有机玻璃拉伸断口形貌与拉伸温度相关性分析[J]. 材料工程, 2020, 48(10): 96-104.
[4] 梁效铭, 钟溢健, 马丽丽, 李聪, 陈南春, 解庆林. 硅藻基As(Ⅴ)表面印迹材料的制备与表征[J]. 材料工程, 2020, 48(1): 156-161.
[5] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[6] 张浩, 李海丽. 复合乳化剂作用下相变调湿复合材料的性能和机理[J]. 材料工程, 2019, 47(12): 157-162.
[7] 梁晓波, 李晓延, 姚鹏, 李扬, 金凤阳. 微电子封装中全Cu3Sn焊点形成过程中的组织演变及生长形貌[J]. 材料工程, 2018, 46(8): 106-112.
[8] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
[9] 徐腾威, 甘国友, 严继康, 李震宇, 郭根生, 易健宏. CeO2掺杂对Pb0.92Sr0.06Ba0.02-(Sb2/3Mn1/3)0.05Zr0.48Ti0.47O3基压电陶瓷相结构及性能的影响[J]. 材料工程, 2018, 46(5): 139-144.
[10] 汤超, 陈花玲, 李博, 刘学婧. 软材料表面形貌调控与应用研究进展[J]. 材料工程, 2018, 46(3): 131-141.
[11] 陈俊, 张代军, 张天骄, 包建文, 钟翔屿, 张朋, 刘巍. 溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J]. 材料工程, 2018, 46(2): 41-49.
[12] 黎醒, 蒋炳炎, 吕辉, 周明勇, 翁灿. 疏水植物表面微纳复合结构电铸模芯的制备[J]. 材料工程, 2018, 46(2): 66-72.
[13] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[14] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[15] 孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn