Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (4): 15-24    DOI: 10.11868/j.issn.1001-4381.2018.001164
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于微波辐照合成类石墨烯氮化碳的研究进展
王继刚1,2,*(), 余永志1,3, 邹婧叶1, 孟江1,2, 李淑萍2, 蒋南4,*()
1 东南大学 材料科学与工程学院 江苏省先进金属材料重点实验室, 南京 211189
2 西藏民族大学 西藏水污染控制与环境修复工程实验室, 陕西 咸阳 712082
3 景德镇陶瓷大学 国家日用及建筑陶瓷工程技术研究中心, 江西 景德镇 333001
4 南京医科大学 药学院, 南京 211166
Progress in microwave irradiation synthesis of graphene-like carbon nitride
Ji-gang WANG1,2,*(), Yong-zhi YU1,3, Jing-ye ZOU1, Jiang MENG1,2, Shu-ping LI2, Nan JIANG4,*()
1 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2 Xizang Engineering Laboratory for Water Pollution Control and Ecological Remediation, Xizang Minzu University, Xianyang 712082, Shaanxi, China
3 National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic Institute, Jingdezhen 333001, Jiangxi, China
4 School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
全文: PDF(7248 KB)   HTML ( 21 )  
输出: BibTeX | EndNote (RIS)      
摘要 

类石墨烯氮化碳具有与石墨烯非常相似的结构特征,已在光催化、润滑等领域表现出极优越的性能,成为二维纳米功能材料领域的新热点。本文重点介绍了基于微波辐照合成类石墨烯氮化碳的研究进展,并通过与氧化刻蚀、液相超声剥离、热聚合等传统合成方法的比较,分析了微波合成在制备效率、效果上的优势;并指出采用高功率微波设备和石墨粉、短切碳纤维等对微波具有强烈响应的微波吸收剂,通过增强能量传递与吸收效率,强化微波电磁场环境下合成反应的非稳态程度,有助于提高合成效率、效果,并获取得到特殊形态、结构的新产物。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王继刚
余永志
邹婧叶
孟江
李淑萍
蒋南
关键词 微波合成类石墨烯氮化碳研究进展微波能    
Abstract

The synthesis of graphene-like carbon nitride has been a new research hotspot in the field of two-dimensional functional materials due to its similar structural characteristics to graphene and outstanding properties covering photocatalysis and lubrication and so on. Herein, the research progress of the microwave irradiation synthesis of graphene-like carbon nitride was discussed. Based on the comparison to the traditional preparation approaches including high-temperature oxidation corrosion, liquid phase ultrasonic exfoliation and thermal polymerization, etc., the advantages of microwave irradiation synthesis were analyzed. At the same time, one can find that by means of using high-energy microwave instrument and microwave absorbents covering graphite powders and short carbon fibers that possess excellent microwave energy absorption ability, the transferring and absorption efficient of energy as well as the non-steady degree of the synthesis reactions occurred in the microwave electromagnetic field can be enhanced, is consequently beneficial to the achievement of novel products with special morphology and structure.

Key wordsmicrowave synthesis    graphene-like carbon nitride    research progress    microwave energy
收稿日期: 2018-10-04      出版日期: 2019-04-19
中图分类号:  R318  
基金资助:新世纪优秀人才支持计划(NCET-12-0119);西藏自然科学基金重点项目(2015ZR-14-14);西藏自然科学基金重点项目(XZ2017ZRG-66(Z));西藏自然科学基金青年项目(XZ2017ZRG-49(Z))
通讯作者: 王继刚,蒋南     E-mail: wangjigang@seu.edu.cn;jiangnan@njmu.edu.cn
作者简介: 蒋南(1979-), 女, 副教授, 硕士生导师, 博士, 主要从事功能材料的第一性原理计算与模拟等研究, 联系地址:南京江宁区天元东路818号南京医科大学药学院(211166), E-mail:jiangnan@njmu.edu.cn
王继刚(1973-), 男, 教授, 博士生导师, 博士, 主要从事纳米功能陶瓷的微波合成及功能特性研究, 联系地址:南京江宁区东南大学路2号东南大学九龙湖校区材料科学与工程学院(211189), E-mail:wangjigang@seu.edu.cn
引用本文:   
王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
Ji-gang WANG, Yong-zhi YU, Jing-ye ZOU, Jiang MENG, Shu-ping LI, Nan JIANG. Progress in microwave irradiation synthesis of graphene-like carbon nitride. Journal of Materials Engineering, 2019, 47(4): 15-24.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001164      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/15
Fig.1  三嗪环组成的g-C3N4片层结构[14]
Fig.2  七嗪环组成的g-C3N4片层结构[14]
Fig.3  利用热氧化刻蚀石墨相氮化碳(g-C3N4)制备graphene-like g-C3N4[8]
Fig.4  液相剥离法得到的graphene-like g-C3N4的SEM(a),TEM(b)和AFM(c), (d)表征结果[11]
Fig.5  三聚氰胺等均三嗪类分子热解过程中的结构转变
Fig.6  利用微波合成的graphene-like g-C3N4的SEM(a), (b), TEM(c), (d), 和AFM(e), (f)表征结果[40]
Fig.7  金字塔状graphene-like g-C3N4阵列(a),(b)和底部边缘(c)以及体相g-C3N4的SEM形貌(d)[41]
Fig.8  核-壳结构特征的笼状铁掺杂graphene-like g-C3N4 (a),(b), (c)及片状纯graphene-like g-C3N4(d)的TEM形貌[43]
1 MUKHOPADHYAY G, BEHERA H. Structural and electronic properties of graphene and graphene-like materials[C]//Pre-sented in the 20th International Conference on Composites/Nano-Engineering (ICCE-20). Beijing: ICCE, 2012.
2 LI H S , HU H Q , BAO C J , et al. Tensile strain induced half-metallicity in graphene-like carbon nitride[J]. Phys Chem Chem Phys, 2015, 17 (8): 6028- 6035.
doi: 10.1039/C4CP05560H
3 BRITO W H , DASILVA-ARAÚJO J , CHACHAM H . g-C3N4 and others:predicting new nanoporous carbon nitride planar structures with distinct electronic properties[J]. J Phys Chem C, 2015, 119 (34): 19743- 19751.
doi: 10.1021/acs.jpcc.5b02543
4 ANOTA E C , COCOLETZI H H , CASTRO M . Structural and electronic properties of the graphene-like carbon nitride nanos-heets[J]. J Comput Theor Nanosci, 2013, 10 (11): 2542- 2546.
doi: 10.1166/jctn.2013.3244
5 WANG Y S , JI Y , LI M , et al. Li and Ca co-decorated carbon nitride nanostructures as high-capacity hydrogen storage media[J]. J Appl Phys, 2011, 110, 094311.
doi: 10.1063/1.3656454
6 ZHU K , WANG W , MENG A , et al. Mechanically exfoliated g-C3N4 thin nanosheets by ball milling as high performance photoc-atalysts[J]. RSC Advances, 2015, 5 (69): 56239- 56243.
doi: 10.1039/C5RA09040G
7 HAN Q , HU C , ZHAO F , et al. One-step preparation of iodine-doped graphitic carbon nitride nanosheets as efficient photoca-talysts for visible light water splitting[J]. J Mater Chem A, 2015, 3 (8): 4612- 4129.
doi: 10.1039/C4TA06093H
8 NIU P , ZHANG L L , LIU G , et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Adv Funct Mater, 2012, 22 (22): 4763- 4770.
doi: 10.1002/adfm.v22.22
9 XU J , ZHANG L , SHI R , et al. Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis[J]. J Mater Chem A, 2013, 1 (46): 14766- 14772.
doi: 10.1039/c3ta13188b
10 DU X , ZOU G , WANG Z , et al. A scalable chemical route to soluble acidified graphitic carbon nitride:an ideal precursor for isolated ultrathin g-C3N4 nanosheets[J]. Nanoscale, 2015, 7 (19): 8701- 8706.
doi: 10.1039/C5NR00665A
11 YANG S B , GONG Y J , ZHANG J S , et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Adv Mater, 2013, 25, 2452- 2456.
doi: 10.1002/adma.v25.17
12 LIU C G , WU X T , LI X F . Synthesis of graphene-like g-C3N4/Fe3O4 nanocomposites with high photocatalytic activity and applications in drug delivery[J]. RSC Advances, 2014, 4, 62492- 62498.
doi: 10.1039/C4RA10616D
13 LIU A Y , COHEN M L . Prediction of new low compressibility solids[J]. Science, 1989, 245, 841- 842.
doi: 10.1126/science.245.4920.841
14 吕反修. 金刚石膜制备与应用[M]. 北京: 科学出版社, 2014.
14 LV F X . Preparation and application of diamond films[M]. Beijing: Science Press, 2014.
15 WANG J G , JIANG N . Blood compatibilities of carbon nitride film deposited on biomedical NiTi alloy[J]. Diamond and Related Materials, 2009, 18 (10): 1321- 1325.
doi: 10.1016/j.diamond.2009.07.003
16 WANG J G , LIU M . Study on the tribological properties of hard films deposited on biomedical NiTi alloy[J]. Mater Chem Phys, 2011, 129 (1/2): 40- 45.
17 DONG G H , HO W K , LI Y H , et al. Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent pho-tocatalytic activity for NO removal[J]. Applied Catalysis B:Environmental, 2015, 174/175, 477- 485.
doi: 10.1016/j.apcatb.2015.03.035
18 LU Q J , DENG J H , HOU Y X , et al. One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid[J]. Chem Commun, 2015, 51, 12251- 12253.
doi: 10.1039/C5CC04231C
19 ZHANG P , LI X H , SHAO C L , et al. Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis[J]. J Mater Chem A, 2015, 3 (7): 3281- 3284.
doi: 10.1039/C5TA00202H
20 LIANG Q , ZHANG M , YAO C , et al. High performance visible-light driven photocatalysts of Bi2MoO6-g-C3N4 with controllable solvothermal fabrication[J]. J Photoch and Photobio A, 2017, 332, 357- 363.
doi: 10.1016/j.jphotochem.2016.09.012
21 CARASSITI L , JONES A , HARRISON P , et al. Ultra-rapid, sustainable and selective synthesis of silicon carbide powders and nanomaterials via microwave heating[J]. Energy & Enviro-nmental Science, 2011, 4, 1503- 1510.
22 SRIDHAR V , JEON JH , OH I K . Microwave extraction of graphene from carbon fibers[J]. Carbon, 2011, 49 (1): 222- 226.
doi: 10.1016/j.carbon.2010.09.007
23 薛伟江, 于娟, 丁滔, 等. 基于高能微波真空辐射快速制备石墨烯[J]. 材料工程, 2014, (7): 39- 43.
23 XUE W J , YU J , DING T , et al. Fast preparation of graph-eneusing high-energy microwave vacuum radiation[J]. Journal of Materials Engineering, 2014, (7): 39- 43.
24 VOIRY D , YANG J , KUPERBERG J , et al. High-quality graphene via microwave reduction of solution-exfoliated graph-ene oxide[J]. Science, 2016, 353, 1413- 1416.
doi: 10.1126/science.aah3398
25 MASAR M , URBANEK P , SKODA D , et al. Preparation and characterization of expanded g-C3N4 via rapid microwave-assi-sted synthesis[J]. Diamond and Related Materials, 2018, 83, 109- 117.
doi: 10.1016/j.diamond.2018.01.028
26 ACHADU O J , REVAPRASADU N . Microwave-assisted synthesis of thymine-functionalized graphitic carbon nitride qu-antum dots as a fluorescent nanoprobe for mercury(Ⅱ)[J]. Microchimica Acta, 2018, 185 (10): 461.
doi: 10.1007/s00604-018-3004-2
27 SADIQ M M J , SHENOY U S , BHAT D K . Synthesis of BaWO4/NRGO-g-C3N4 nanocomposites with excellent multifun-ctional catalytic performance via microwave approach[J]. Frontiers of Materials Science, 2018, 12 (3): 247- 263.
doi: 10.1007/s11706-018-0433-0
28 SEZA A , SOLEIMANI F , NASERI N , et al. Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting[J]. Applied Surface Science, 2018, 440, 153- 161.
doi: 10.1016/j.apsusc.2018.01.133
29 VIDYASAGAR D , GHUGAL S G , KULKARNII , et al. Microwave assisted in situ decoration of a g-C3N4 surface with CdCO3 nanoparticles for visible light driven photocatalysis[J]. New Journal of Chemistry, 2018, 42 (8): 6322- 6331.
doi: 10.1039/C8NJ00444G
30 YUAN Y P , YIN L S , CAO S W , et al. Microwave-assisted heating synthesis:a general and rapid strategy for large-scale production of highly crystalline g-C3N4 with enhanced photo-catalytic H2 production[J]. Green Chemistry, 2014, 16 (11): 4663- 4668.
doi: 10.1039/C4GC01517G
31 GUO Y F , LI J , YUAN Y P , et al. A rapid microwave-assisted thermolysis route to highly crystalline carbon nitrides for high-efficiency hydrogen generation[J]. Angew Chem Int, 2016, 55 (47): 14693- 14697.
doi: 10.1002/anie.201608453
32 裴昭君.石墨相碳化氮可见光催化降解罗丹明B的试验研究[D].成都: 成都理工大学, 2014.
32 PEI Z J. Photocatalytic of rhodamine B with graphite phase carbon nitrogen under visible light[D]. Chengdu: Chengdu University of Technology, 2014.
33 高军.微纳结构g-C3N4的制备与性能研究[D].南京: 南京大学, 2012.
33 GAO J. Research on synthesis of micro-nano structured g-C3N4 and their properties[D]. Nanjing: Nanjing University, 2012.
34 MENÉNDEZ J A , JUÁREZ-PÉREZ E J , RUISÁNCHEZ E , et al. Ball lightning plasma and plasma arc formation during the microwave heating of carbons[J]. Carbon, 2011, 49 (1): 346- 349.
doi: 10.1016/j.carbon.2010.09.010
35 WANG J G , LIU S , DING T , et al. Synthesis, characteriz-ation, and photoluminescence properties of bulk-quantity β-SiC/SiOx coaxial nanowires[J]. Mater Chem Phys, 2012, 135 (2/3): 1005- 1011.
36 WANG J G , LIU S , HUANG S , et al. EBSD characterization the growth mechanism of SiC synthesized via direct microwave heating[J]. Materials Characterization, 2016, 114 (3): 54- 61.
37 LIU S , WANG J G . Ultra-violet emission from one dimensional and micro-sized SiC obtained via microwave heating[J]. Materials Science in Semiconductor Processing, 2017, 72, 60- 66.
doi: 10.1016/j.mssp.2017.09.022
38 LIU S , WANG J G . Tunable magnetic properties of SiC obtained by microwave heating[J]. Journal of Alloys and Comp-ounds, 2018, 731, 369- 374.
doi: 10.1016/j.jallcom.2017.09.292
39 ZHOU Q , YU Y Z , HUANG S , et al. Field-emission property of self-purification SiC/SiOx coaxial nanowires synthesized via direct microwave irradiation using iron-containing catalyst[J]. Electron Mater Lett, 2017, 13 (4): 351- 358.
doi: 10.1007/s13391-017-7010-z
40 YU Y Z , ZHOU Q , WANG J G . Ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission[J]. Chem Commun, 2016, 52, 3396- 3399.
doi: 10.1039/C5CC10258H
41 YU Y Z , WANG C C , LUO L H , et al. An environment-friendly route to synthesize pyramid-like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradi-ation[J]. Chemical Engineering Journal, 2018, 334, 1869- 1877.
doi: 10.1016/j.cej.2017.11.133
42 YU Y Z , WANG J G . Direct microwave synthesis of graphitic C3N4 with improved visible-light photocatalytic activity[J]. Ceramics International, 2016, 42, 4063- 4071.
doi: 10.1016/j.ceramint.2015.11.078
43 YU Y Z , CHENG S , CHENG S , et al. Self-assembly of yolk-shell porous Fe-doped g-C3N4 microarchitectures with excellent photocatalytic performance under visible light[J]. Sustainable Materials and Technologies, 2018, 17, e00072.
doi: 10.1016/j.susmat.2018.e00072
44 GU Y P , YU Y Z , ZOU J Y , et al. The ultra-rapid synthesis of rGO/g-C3N4 composite via microwave heating with enhanced photocatalytic performance[J]. Materials Letters, 2018, 232, 107- 109.
doi: 10.1016/j.matlet.2018.08.077
45 邹婧叶, 余永志, 顾永攀, 等. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征研究[J]. 材料工程, 2019, 47 (3): 1- 7.
45 ZOU J Y , YU Y Z , GU Y P , et al. Study on the structural feature of graphene-like graphitic carbon nitride nanosheets synthesized via high-energy microwave irradiation[J]. Journal of Materials Engineering, 2019, 47 (3): 1- 7.
[1] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[2] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35.
[3] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[4] 刘昊东, 朱光明, 任天宁. 功能性POSS制备的研究进展[J]. 材料工程, 2019, 47(12): 33-42.
[5] 吴笑, 许博, 朱向东, 辛菲, 钱立军, 刘吉平. 催化阻燃聚合物的研究进展[J]. 材料工程, 2018, 46(9): 14-22.
[6] 游国强, 郭伟, 张秀丽, 文恒玉, 沈鹭. 镁合金摩擦焊的研究进展[J]. 材料工程, 2018, 46(1): 141-148.
[7] 吕生华, 李莹, 杨文强, 崔亚亚. 氧化石墨烯/壳聚糖生物复合材料的制备及应用研究进展[J]. 材料工程, 2016, 44(10): 119-128.
[8] 徐文骥, 宋金龙, 孙晶, 窦庆乐. 金属基体超疏水表面制备及应用的研究进展[J]. 材料工程, 2011, 0(5): 93-98.
[9] 韩媛媛, 张宇民, 韩杰才, 张剑寒, 姚旺, 周玉峰. 国内外碳化硅反射镜及系统研究进展[J]. 材料工程, 2005, 0(6): 59-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn