Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (5): 129-136    DOI: 10.11868/j.issn.1001-4381.2018.000189
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
玄武岩纤维表面改性对生物膜附着性能的影响
张晓颖1, 荣新山1,2, 徐吉成3, 周向同1,2, 吴智仁1,2
1. 江苏大学 环境与安全工程学院, 江苏 镇江 212013;
2. 江苏大学 环境健康与生态安全研究院, 江苏 镇江 212013;
3. 镇江市高等专科学校 医药与化材学院, 江苏 镇江 212028
Effect of surface modification of basalt fiber on biofilm attachment
ZHANG Xiao-ying1, RONG Xin-shan1,2, XU Ji-cheng3, ZHOU Xiang-tong1,2, WU Zhi-ren1,2
1. School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China;
2. Institute of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, Jiangsu, China;
3. Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212028, Jiangsu, China
全文: PDF(16726 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用壳聚糖对玄武岩纤维(BF)进行表面改性处理,研究改性后玄武岩纤维对生物膜附着性能的影响。利用红外光谱、X射线光电子谱仪、扫描电镜等对改性前后玄武岩纤维的表面官能团、成分和形貌进行表征分析,通过接触角测量仪对样品的亲水性进行研究,最后通过挂膜实验,讨论生物膜在改性前后玄武岩纤维上的附着性能。结果表明:采用物理涂覆法可成功制备改性玄武岩纤维(MBF),所制得的MBF表面粗糙度为209.04nm,接触角为66.62°。MBF表面形成的生物膜均匀致密,生物膜附着量明显增大,挂膜率由(129.27±1.23)%增加至(179.92±2.63)%,说明壳聚糖改性玄武岩纤维可以有效提升生物膜的附着性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓颖
荣新山
徐吉成
周向同
吴智仁
关键词 玄武岩纤维壳聚糖亲水性表面粗糙度生物膜    
Abstract:Basalt fiber(BF) was modified with chitosan to investigate the influence of the surface modification on biofilm attachment properties. The surface functional groups, composition and morphology were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electron spectroscopy (XPS) and scanning electron microscopy (SEM). Furthermore, the hydrophi-licity of BF was analyzed by contact angle measurement and the biofilm attachment properties were discussed via the microorganism immobilization tests. The results show that the surface-modified basalt fiber (MBF) can be successfully prepared by physical coating method. The surface roughness of MBF is 209.04nm, and the contact angle of MBF is 66.62°. Moreover, the biomass attached on MBF surface is significantly increased and the biofilm is relatively dense and homogeneous. The micro-organism immobilization rate is increased from (129.27±1.23)% to (179.92±2.63)%, thus illustr-ating that surface modification of basalt fiber can significantly improve biofilm attachment properties.
Key wordsbasalt fiber    chitosan    hydrophilicity    surface roughness    biofilm
收稿日期: 2018-02-22      出版日期: 2019-05-17
中图分类号:  TQ343  
通讯作者: 吴智仁(1963-),男,研究员,博士,博士生导师,主要从事环境净化和生态修复材料的研发及应用技术研究,联系地址:江苏省镇江市学府路301号江苏大学环境与安全工程学院(212013),E-mail:wuzhiren@ujs.edu.cn     E-mail: wuzhiren@ujs.edu.cn
引用本文:   
张晓颖, 荣新山, 徐吉成, 周向同, 吴智仁. 玄武岩纤维表面改性对生物膜附着性能的影响[J]. 材料工程, 2019, 47(5): 129-136.
ZHANG Xiao-ying, RONG Xin-shan, XU Ji-cheng, ZHOU Xiang-tong, WU Zhi-ren. Effect of surface modification of basalt fiber on biofilm attachment. Journal of Materials Engineering, 2019, 47(5): 129-136.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000189      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/129
[1] JIN Y, DING D, FENG C, et al. Performance of sequencing batch biofilm reactors with different control systems in treating synthetic municipal wastewater[J]. Bioresource Technology, 2012, 104(1):12-18.
[2] LI H, ZHANG Y, YANG M, et al. Effects of hydraulic retent-ion time on nitrification activities and population dynamics of a conventional activated sludge system[J]. Frontiers of Enviro-nmental Science & Engineering, 2013, 7(1):43-48.
[3] MAO Y, QUAN X, ZHAO H, et al. Accelerated startup of moving bed biofilm process with novel electrophilic suspended biofilm carriers[J]. Chemical Engineering Journal, 2017, 315:364-372.
[4] TERADA A, OKUYAMA K, NISHIKAWA M, et al. The effect of surface charge property on Escherichia coli initial adhe-sion and subsequent biofilm formation[J]. Biotechnology & Bio-engineering, 2012, 109(7):1745-1754.
[5] GUO K, FREGUIA S, DENNIS P G, et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, comm-unity composition, and current generation in bioelectrochemical systems[J]. Environmental Science & Technology, 2013, 47(13):7563-7570.
[6] FERNANDEZ M R, CASABONA M G, ANUPAMA V N, et al. PDMS-based porous particles as support beds for cell immo-bilization:bacterial biofilm formation as a function of porosity and polymer composition[J]. Colloids and Surfaces B-Biointerfaces, 2010, 81(1):289-296.
[7] JEONG Y, HERMANOWICZ S W, PARK C. Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater[J]. Water Research, 2017, 123:86-95.
[8] FELFOLDI T, JURECSKA L, VAJNA B, et al. Texture and ty-pe of polymer fiber carrier determine bacterial colonization and biofilm properties in wastewater treatment[J]. Chemical Engin-eering Journal, 2015, 264:824-834.
[9] MATSUMOTO S, OHTAKI A, HORI K. Carbon fiber as an excellent support material for wastewater treatment biofilms[J]. Environmental Science & Technology, 2012, 46(18):10175-10181.
[10] 陈菁,顾轶卓,杨中甲,等. 高温处理对几种玄武岩纤维成分和拉伸性能的影响[J]. 材料工程, 2017, 45(6):61-66. CHEN J, GU Y Z, YANG Z J, et al. Effects of elevated tem-perature treatment on compositions and tensile properties of sev-eral kinds basalt fibers[J]. Journal of Materials Engineering, 2017, 45(6):61-66
[11] 曹海琳,张春红,张志谦,等. 玄武岩纤维表面涂层改性研究[J]. 航空材料学报, 2007, 27(5):77-82. CAO H L, ZHANG C H, ZHANG Z Q, et al. Study on sizing modification of basalt fibers[J]. Journal of Aeronautical Mat-erials, 2007, 27(5):77-82.
[12] JIANG X, WU C D, WU Z R, et al. Basic characteristics and application of basalt fiber in the water pollution control[J]. Advanced Materials Research, 2015, 1073-1076:838-843.
[13] 许志至,许小红,吴向阳,等. 纳米SiO2分散液表面改性玄武岩纤维载体的研究[J]. 合成纤维, 2016, 45(10):15-17. XU Z Z, XU X H, WU X Y, et al. Study on surface modification of basalt fibers carrier by nano silica dispersion[J]. Synthetic Fiber in China, 2016, 45(10):15-17.
[14] ZHANG X Y, ZHOU X T, NI H C, et al. Surface modification of basalt fiber with organic/inorganic composites for biofilm carrier used in wastewater treatment[J]. ACS Sustainable Che-mistry & Engineering, 2018, 6(2):2596-2602.
[15] 吕生华,李莹,杨文强,等. 氧化石墨烯/壳聚糖生物复合材料的制备及应用研究进展[J]. 材料工程, 2016, 44(10):119-128. LYU S H, LI Y, YANG W Q, et al. Research progress on preparation and application of graphene oxide/chitosan bioco-mposites[J]. Journal of Materials Engineering, 2016, 44(10):119-128.
[16] 廖晓燕,程江,皮丕辉,等. 可降解高分子生物膜载体的研究进展[J]. 材料导报, 2008, 22(4):96-99. LIAO X Y, CHENG J, PI P H, et al. Research progress in degradable polymer biofilm carriers[J]. Materials Review, 2008, 22(4):96-99.
[17] 耿佳,冯芳,孔丹,等. 壳聚糖改性聚氨酯载体处理高氨氮废水的研究[J]. 材料导报, 2013, 27(2):116-120. GENG J, FENG F, KONG D, et al. Study on chitosan modified polyurethane foams carrier for treatment of wastewater conta-ining strong ammonium[J]. Materials Review, 2013, 27(2):116-120.
[18] 许跃,刘文,刘群华. 表面涂覆壳聚糖对碳纤维在水中分散性的影响[J]. 中国造纸, 2010, 29(3):14-16. XU Y, LIU W, LIU Q H. Effect of chitosan coating on the dispersion of carbon fibers in water[J]. China Pulp & Paper, 2010, 29(3):14-16.
[19] BAO Y, DAI G. Time-gradient nitric acid modification of CF biofilm-carrier and surface nature effects on microorganism immobilization behavior in wastewater[J]. Biotechnology & Biotechnological Equipment, 2013, 27(4):3918-3922.
[20] SHAYED M A, HUND R D, CHERIF C. Improvement of thermo-mechanical properties of basalt fiber using heat resistant polymeric coatings[J]. Fibers & Polymers, 2014, 15(10):2086-2094.
[21] DOUNIGHI N M, MEHRABI M, AVADI M R, et al. Prep-aration, characterization and stability investigation of chitosan nanoparticles loaded with the Echis carinatus snake venom as a novel delivery system[J]. Archives of Razi Institute, 2016, 70(4):269-277.
[22] YUAN X, ZHU B, CAI X, et al. Optimization of interfacial properties of carbon fiber/epoxy composites via a modified polyacrylate emulsion sizing[J]. Applied Surface Science, 2016, 401:414-423.
[23] WANG G J, LIU Y W, GUO Y J, et al. Surface modification and characterizations of basalt fibers with non-thermal plasma[J]. Surface & Coatings Technology, 2007, 201(15):6565-6568.
[1] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[2] 赵晓燕, 黄晨, 张帅, 汪称意. 壳聚糖/聚乙烯醇过滤膜的制备及其性能表征[J]. 材料工程, 2020, 48(7): 176-183.
[3] 李进, 候冰娜, 韩超越, 倪凯, 赵梓年, 李征征. 可注射乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶的制备及药物缓释研究[J]. 材料工程, 2020, 48(5): 83-90.
[4] 杜歌, 魏莉, 刘自双, 武继民, 陈子浩, 田丰. γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响[J]. 材料工程, 2020, 48(5): 106-111.
[5] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[6] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[7] 候冰娜, 李进, 倪凯, 韩超越, 沈惠玲, 赵琳琳, 李征征. 光交联羧甲基壳聚糖水凝胶的制备及药物缓释性能研究[J]. 材料工程, 2020, 48(11): 76-84.
[8] 曾威, 毛杰, 马景涛, 邓畅光, 邓子谦, 邓春明, 宋鹏. 表面粗糙度对PS-PVD热障涂层陶瓷层沉积的影响[J]. 材料工程, 2019, 47(8): 161-168.
[9] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[10] 任德均, 李锐, 王明连, 刘九山. 磁场对磁流变弹性体表面特性的影响[J]. 材料工程, 2019, 47(3): 79-86.
[11] 赵金华, 曹海琳, 晏义伍, 丁莉. 泡沫铝夹层结构复合材料低速冲击性能[J]. 材料工程, 2018, 46(1): 92-98.
[12] 陈宏霞, 马福民, 黄林滨. 超浸润性金属丝网的制备及工艺优化[J]. 材料工程, 2017, 45(9): 59-65.
[13] 陈菁, 顾轶卓, 杨中甲, 李敏, 王绍凯, 张佐光. 高温处理对几种玄武岩纤维成分和拉伸性能的影响[J]. 材料工程, 2017, 45(6): 61-66.
[14] 张传杰, 颜超, 刘云, 崔莉, 朱平. 过程控制剂对机械球磨法制备壳聚糖微细粉体结构与性能的影响[J]. 材料工程, 2016, 44(12): 54-60.
[15] 刘朋博, 王嘉骏, 冯连芳, 顾雪萍. 润湿性可切换的表面[J]. 材料工程, 2016, 44(12): 118-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn