Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (5): 137-144    DOI: 10.11868/j.issn.1001-4381.2017.000224
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
添加剂辅助水热热解制备尺寸可控纳米孔碳微球
徐顺建1,2,*()
1 新余学院 机电工程学院, 江西 新余 338004
2 新余学院 新余新能源研究所, 江西 新余 338004
Additive-assisted hydrothermal route to synthesize nanoporous carbon microspheres with controlled particle size
Shun-jian XU1,2,*()
1 School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338004, Jiangxi, China
2 Xinyu Institute of New Energy, Xinyu University, Xinyu 338004, Jiangxi, China
全文: PDF(7267 KB)   HTML ( 12 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以KCl和HCl为添加剂,以果糖和淀粉为前躯体,通过水热处理和后续热解制备碳微球,探讨添加剂的作用机制。结果表明:碳微球具有纳米孔隙结构和表面含氧官能团。在2种前躯体中,添加剂均能促使具有规则球形的微球尺寸呈不同幅度的增大,平均直径控制在0.53~6.67μm之间。碳微球的形状和尺寸源于水热处理,而热解促使微球的结构由聚合物向玻璃碳转变,同时伴随着超过20%的尺寸收缩和近50%的质量损失。在水热反应过程中,氯化氢主要促进前期的多糖水解动力学以及单糖脱水与分裂动力学,而氯化钾主要加速后期微球的生长动力学。微球的生长涉及2种主要模式:构造单元交联生长和微粒合并生长。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐顺建
关键词 添加剂碳水化合物水热反应碳微球    
Abstract

Carbon microspheres were synthesized by the hydrothermal treatment of saccharides (fructose and starch) in the presence of additives (HCl and KCl) and the subsequent pyrolysis, and the role of the additives in the hydrothermal reaction was also investigated. The results show that carbon microspheres with well-developed nanoporous structures and surface oxygen functional groups are obtained. Both of the additives in the saccharide solutions induce the enlargement of the size of the microspheres. The mean diameter of the microspheres can be tailored in a range from 0.53μm to 6.67μm. The morphology of the microspheres depends on the reaction kinetics during hydrothermal treatment. During pyrolysis, the microstructure of the microspheres is transformed from polymer to glassy carbon, which is accompanied by a mass loss of about 50% and a contraction of over 20% in scale. Both of the additives display distinct effects on the stages of the hydrothermal reaction of the saccharide solutions. The HCl mainly accelerates the hydrolysis kinetic of polysaccharide and the dehydration and fragmentation of monosaccharide, while the KCl chiefly enhances the growth kinetic of the microspheres. The growth of the microspheres is performed through two main ways:the reactive oxygen functionalities present in both the surfaces of the microspheres and the building units and the merged fine microspheres.

Key wordsadditive    carbohydrate    hydrothermal reaction    carbon microsphere
收稿日期: 2017-03-01      出版日期: 2019-05-17
中图分类号:  TB383  
基金资助:江西省青年科学家培养对象计划(20133BCB23035);江西省自然科学基金(20161BAB206106);江西省高等学校科技落地计划(KJLD13100);江西省教育厅科技项目(GJJ171060)
通讯作者: 徐顺建     E-mail: xushunjian@126.com
作者简介: 徐顺建(1978-), 男, 副教授, 博士, 主要从事新型碳材料的制备与应用研究, 联系地址:江西省新余市阳光大道2666号新余学院机电工程学院(338004), E-mail:xushunjian@126.com
引用本文:   
徐顺建. 添加剂辅助水热热解制备尺寸可控纳米孔碳微球[J]. 材料工程, 2019, 47(5): 137-144.
Shun-jian XU. Additive-assisted hydrothermal route to synthesize nanoporous carbon microspheres with controlled particle size. Journal of Materials Engineering, 2019, 47(5): 137-144.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000224      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/137
Fig.1  碳微球的XRD谱图
Fig.2  碳微球的XPS C1s谱图(a),FT-IR光谱图(b)和N2吸附-脱附等温曲线(c)
Fig.3  碳微球的SEM图
(a)CS-F; (b)CS-FK; (c)CS-FH1;(d)CS-FH2;(e)CS-S; (f)CS-SK; (g)CS-SH1;(h)CS-SH2
Fig.4  碳微球的尺寸分布图
(a)CS-F; (b)CS-FK; (c)CS-FH1;(d)CS-FH2;(e)CS-S; (f)CS-SK; (g)CS-SH1;(h)CS-SH2
Fig.5  未经热解处理的碳微球的XRD谱图
Fig.6  未经热解处理的碳微球CS-F,CS-S的SEM形貌(1)与尺寸分布图(2)
(a)CS-F;(b)CS-S
Fig.7  未经热解处理的碳微球的TG曲线
Fig.8  清洗废液干燥后获得的固体粉末的FT-IR光谱图
Fig.9  水热处理2h后不同淀粉溶液的UV-Vis谱图(插图为经水热处理不同时间后的宏观照片)
Fig.10  合并状态的碳微球SEM形貌(a)及2球连接处的局部放大SEM形貌(b)
1 SUN H C , CHEN T Q , LIU Y , et al. Carbon microspheres via microwave-assisted synthesis as counter electrodes of dye-sensi-tized solar cells[J]. Journal of Colloid and Interface Science, 2015, 445, 326- 329.
doi: 10.1016/j.jcis.2015.01.016
2 SUN Y , YANG G , WEN C , et al. Preparation of carbon sphere from lactose by hydrothermal reaction and its performance in gas separation[J]. Environmental Progress & Sustainable Energy, 2014, 33 (2): 581- 587.
3 牛梅, 杨雅茹, 王欣, 等. CMSs/PET微胶囊阻燃PET纤维制备与表征[J]. 材料工程, 2016, 44 (6): 63- 69.
3 NIU M , YANG Y R , WANG X , et al. Preparation and charac-terization of flame retardant PET fiber with microencapsulated CMSs/PET[J]. Journal of Materials Engineering, 2016, 44 (6): 63- 69.
4 程有亮, 李铁虎, 李凤娟, 等. 硅油/煤沥青乳液制备中间相炭微球[J]. 材料工程, 2010, (3): 56- 59.
4 CHENG Y L , LI T H , LI F J , et al. Preparation of mesocarbon microbeads with silicone oil/pitch emulsion[J]. Journal of Mate-rials Engineering, 2010, (3): 56- 59.
5 BERL E , SCHMIDT A , KOCH H . The origin of coal[J]. Angewandte Chemie, 1932, 45 (32): 517- 519.
doi: 10.1002/(ISSN)1521-3757
6 WANG Q , LI H , CHEN L Q , et al. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon, 2001, 39 (14): 2211- 2214.
doi: 10.1016/S0008-6223(01)00040-9
7 SEVILLA M , FUERTES A B . Chemical and structural proper-ties of carbonaceous products obtained by hydrothermal carboni-zation of saccharides[J]. European Journal of Chemistry, 2009, 15 (16): 4195- 4203.
doi: 10.1002/chem.v15:16
8 YAO C , SHIN Y , WANG L , et al. Hydrothermal dehydration of aqueous fructose solutions in a closed system[J]. The Journal of Physical Chemistry C, 2007, 111 (42): 15141- 15145.
doi: 10.1021/jp074188l
9 SUN X M , LI Y D . Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Che-mie International Edition, 2004, 43 (5): 597- 601.
doi: 10.1002/(ISSN)1521-3773
10 QI Y , ZHANG M , QI L , et al. Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization[J]. RSC Advances, 2016, 6 (26): 20814- 20823.
11 SHIN Y S , WANG L Q , BAE I T , et al. Hydrothermal synth-eses of colloidal carbon spheres from cyclodextrins[J]. The Journal of Physical Chemistry C, 2008, 112 (37): 14236- 14240.
doi: 10.1021/jp801343y
12 OKANO T , SUZUKI Y . Hydrothermal synthesis of carbonace-ous spheres starting from different starches[J]. Journal of the Ceramic Society of Japan, 2016, 124 (1): 79- 81.
doi: 10.2109/jcersj2.15111
13 ZHENG M T , LIU Y L , JIANG K M , et al. Alcohol-assisted hydrothermal carbonization to fabricate spheroidal carbons with a tunable shape and aspect ratio[J]. Carbon, 2010, 48 (4): 1224- 1233.
doi: 10.1016/j.carbon.2009.11.045
14 RYU J , SUH Y W , SUH D J , et al. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic com-pounds[J]. Carbon, 2010, 48 (7): 1990- 1998.
doi: 10.1016/j.carbon.2010.02.006
15 DEMIR-CAKAN R , BACCILE N , ANTONIETTI M . Carboxy-late-rich carbonaceous materials via one-step hydrothermal carb-onization of glucose in the presence of acrylic acid[J]. Chemis-try of Materials, 2009, 21 (3): 484- 490.
doi: 10.1021/cm802141h
16 MOON G H , SHIN Y S , AREV B W , et al. Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink[J]. Colloid and Polymer Science, 2012, 290 (15): 1567- 1573.
doi: 10.1007/s00396-012-2729-4
17 CUI X J , ANTONIETTI M , YU S H . Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carboniza-tion of starch and rice carbohydrates[J]. Small, 2006, 2 (6): 756- 759.
doi: 10.1002/(ISSN)1613-6829
18 CAI H M , LIN X Y , TIAN L Y , et al. One-step hydrothermal synthesis of carbonaceous spheres from glucose with an alum-inum chloride catalyst and its adsorption characteristic for Uranium(Ⅵ)[J]. Industrial & Engineering Chemistry Resear-ch, 2016, 55 (36): 9648- 9656.
19 TANABE Y , YAMANAKA J , HOSHI K , et al. Surface grap-hitization of furan-resin-derived carbon[J]. Carbon, 2001, 39 (15): 2347- 2353.
doi: 10.1016/S0008-6223(01)00069-0
20 BRAUN A , BARTSCH M , SCHNYDER B , et al. X-ray scat-tering and adsorption studies of thermally oxidized glassy carbon[J]. Journal of Non-Crystalline Solids, 1999, 260 (1/2): 1- 14.
21 LI M , LI W , LIU S X . Control of the morphology and chemical properties of carbon spheres prepared from glucose by a hydr-othermal method[J]. Journal of Materials Research, 2012, 27 (8): 1117- 1123.
doi: 10.1557/jmr.2011.447
22 SING K S W . Reporting physisorption data for gas/solid syst-ems with special reference to the determination of surface-area and porosity[J]. Pure and Applied Chemistry, 1985, 57 (4): 603- 619.
doi: 10.1351/pac198557040603
23 YAO W T , YU L , YAO P F , et al. Bulk production of nonpre-cious metal catalysts from cheap starch as precursor and their excellent electrochemical activity[J]. ACS Sustainable Chem-istry & Engineering, 2016, 4 (6): 3235- 3244.
24 LI M , LI W , LIU S . Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose[J]. Carb-ohydrate Research, 2011, 346 (8): 999- 1004.
doi: 10.1016/j.carres.2011.03.020
25 GARROTE G , DOMINGUEZ H , PARAJO J C . Hydrothermal processing of lignocellulosic materials[J]. Holz als Roh-und Werkstoff, 1999, 57 (3): 191- 202.
doi: 10.1007/s001070050039
26 NAGAMORI M , FUNAZUKURI T . Glucose production by hydrolysis of starch under hydrothermal conditions[J]. Journal of Chemical Technology & Biotechnology, 2004, 79 (3): 229- 233.
27 SAKAKI T , SHIBATA M , MILI T , et al. Reaction model of cellulose decomposition in near-critical water and fermentation of products[J]. Bioresource Technology, 1996, 58 (2): 197- 202.
doi: 10.1016/S0960-8524(96)00099-5
28 TANGER Ⅳ C , PITZER K S . Calculation of the ionization con-stant of H2O to 2, 273K and 500MPa[J]. AIChE Journal, 1989, 35 (10): 1631- 1638.
doi: 10.1002/(ISSN)1547-5905
[1] 杨礼河, 陈绪望, 张建国, 孙玉德. 纳米G/Fe3O4复合材料的制备及其摩擦学性能[J]. 材料工程, 2021, 49(2): 143-148.
[2] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
[3] 孟凡善, 李征, 丁昊昊, 王文健, 刘启跃. 油酸修饰纳米BN/TiN润滑添加剂的摩擦学性能研究[J]. 材料工程, 2020, 48(5): 160-167.
[4] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[5] 南文争, 燕绍九, 彭思侃, 王晨, 王继贤. 石墨烯的液相剥离制备及在磷酸铁锂正极中的应用[J]. 材料工程, 2020, 48(11): 108-115.
[6] 吴雪梅, 杨绿, 周元康, 曹阳. 超微坡缕石/Cu复合粉体作为润滑油添加剂的摩擦学性能[J]. 材料工程, 2018, 46(9): 88-94.
[7] 韩祥祥, 于思荣, 李好. 锌基体疏液表面的制备及润湿行为[J]. 材料工程, 2018, 46(3): 67-73.
[8] 张闫, 费敬银, 李倍, 赵非凡, 彭秋艳. 快速电沉积法制备镍基金刚石复合镀层[J]. 材料工程, 2016, 44(10): 24-32.
[9] 许一, 南峰, 徐滨士. 凹凸棒石/油溶性纳米铜复合润滑添加剂的摩擦学性能[J]. 材料工程, 2016, 44(10): 41-46.
[10] 裴和中, 黄攀, 史庆南, 陆峰, 张俊, 张国亮. 添加剂和电流密度对镍钴合金电铸层组织结构的影响[J]. 材料工程, 2013, 0(6): 18-24.
[11] 杨绿,周元康,李屹,吴雪梅,陈建海,王陈向. 坡缕石/Ag复合纳米材料添加剂的自修复性能研究[J]. 材料工程, 2012, 0(3): 12-16.
[12] 马国华, 彭同江, 吴卫东, 刘海峰, 李明. Ni2+掺杂纤蛇纹石纳米管的制备与磁性研究[J]. 材料工程, 2011, 0(9): 77-81.
[13] 杨绿, 周元康, 李屹, 朱湘宁, 张勇杰. 纳米坡缕石润滑油添加剂对灰铸铁HT200摩擦磨损性能的影响[J]. 材料工程, 2010, 0(4): 94-98.
[14] 马士玉, 郑少华, 郭洪娜, 丁海洋. 无定形纳米ZrO2表面改性研究[J]. 材料工程, 2008, 0(10): 366-369.
[15] 任呈强, 李铁虎, 孙效燕, 宋发举, 王大为. 添加剂对煤沥青在喹啉不溶物滤饼中渗透性的影响[J]. 材料工程, 2006, 0(2): 34-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn