Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (5): 153-158    DOI: 10.11868/j.issn.1001-4381.2017.000830
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
共聚低热膨胀聚酰亚胺薄膜的制备与表征
张明艳1,2, 高升1, 吴子剑1,2,*(), 崔宏玉1, 高岩1
1 哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040
2 哈尔滨理工大学 工程电介质及其应用技术教育部重点实验室, 哈尔滨 150080
Preparation and characterization of low expansion transparent copolyimide films
Ming-yan ZHANG1,2, Sheng GAO1, Zi-jian WU1,2,*(), Hong-yu CUI1, Yan GAO1
1 School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
2 Engineering Dielectrics and Its Application Key Laboratory(Ministry of Education), Harbin University of Science and Technology, Harbin 150080, China
全文: PDF(901 KB)   HTML ( 8 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以4,4'-(六氟异丙烯)二酞酸酐(6FDA)为含氟二酐,4,4'-二氨基-2,2'-双三氟甲基联苯(TFMB)为含氟二胺,通过引入分子结构相对对称的刚性单体1,2,4,5-均苯四甲酸二酐(PMDA)进行共聚合成了5种含氟比例不同的透明聚酰亚胺薄膜,并对其性能进行了表征。分析表明:引入刚性单体共聚后薄膜的热稳定性和耐热性有所提高;薄膜的介电常数随着PMDA含量的上升而增加;共聚薄膜在可见光领域的透光率低于均聚薄膜;拉伸实验显示在添加少量PMDA后,薄膜的拉伸强度和弹性模量有所增大,但当PMDA含量过高时其力学性能反而下降;随着PMDA含量的增加,薄膜的热膨胀系数明显降低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张明艳
高升
吴子剑
崔宏玉
高岩
关键词 聚酰亚胺薄膜透明含氟共聚热膨胀系数    
Abstract

Five transparent polyimide thin films with different proportions of 1, 2, 4, 5-, pyromellitic dianhydride (PMDA) were made by copolymerization of 4, 4'-(six fluoro isopropenyl) two phthalic anhydride (6FDA), 4, 4'-two amino -2, 2'-double three trifluoromethyl biphenyl (TFMB) and PMDA, and their properties were characterized. The results show that thermal stability and heat resistance are increased after the introduction of rigid monomers; the dielectric constant of the films is increased with the increase of PMDA content; homopolymer film has higher light transmission rate than copolymer films in visible light; tensile test shows that adding a small amount of PMDA, the tensile strength and elastic modulus of the film are increased, but when the content of PMDA is higher than 40%, the mechanical properties are decreased; the coefficient of thermal expansion of the films are decreased obviously while PMDA content is increased.

Key wordspolyimide film    transparent    fluorine containing    copolymerization    coefficient of thermal expansion
收稿日期: 2017-06-27      出版日期: 2019-05-17
中图分类号:  TQ317.3  
基金资助:国家自然基金面上项目(51677045);黑龙江省博士后面上项目一等资助(LBH-Z16089);中国博士后面上项目一等资助(2017M610212)
通讯作者: 吴子剑     E-mail: zijian.wu@hrbust.edu.com
作者简介: 吴子剑(1983-), 男, 讲师, 博士, 研究方向:树脂基复合材料, 联系地址:哈尔滨市香坊区林园路4号哈尔滨理工大学南区(150040), E-mail:zijian.wu@hrbust.edu.com
引用本文:   
张明艳, 高升, 吴子剑, 崔宏玉, 高岩. 共聚低热膨胀聚酰亚胺薄膜的制备与表征[J]. 材料工程, 2019, 47(5): 153-158.
Ming-yan ZHANG, Sheng GAO, Zi-jian WU, Hong-yu CUI, Yan GAO. Preparation and characterization of low expansion transparent copolyimide films. Journal of Materials Engineering, 2019, 47(5): 153-158.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000830      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/153
Number Monomer molar ratio Relative content of PMDA/%
PI-0 n(6FDA):n(TFMB)=1:1 0
PI-1 n(6FDA):n(PMDA):n(TFMB)=9:1:10 10
PI-2 n(6FDA):n(PMDA):n(TFMB)=8:2:10 20
PI-3 n(6FDA):n(PMDA):n(TFMB)=7:3:10 30
PI-4 n(6FDA):n(PMDA):n(TFMB)=6:4:10 40
Table 1  单体配比与试样编号
Fig.1  聚酰亚胺合成反应式
Fig.2  聚酰亚胺薄膜的红外吸收光谱
Film t0/s t/s [η]/(dL·g-1) ηr/(dL·g-1)
PI-0 144.38 232.45 1.61 0.95
PI-1 144.38 242.56 1.68 1.04
PI-2 144.38 254.11 1.76 1.13
PI-3 144.38 272.89 1.89 1.27
PI-4 144.38 291.65 2.02 1.41
Table 2  PAA溶液的黏度数据
Film Td5%/℃ Td10%/℃ Residual mass/% T>g/℃
PI-0 498.51 533.02 48.12 290.44
PI-1 521.53 544.52 49.72 297.28
PI-2 525.33 548.33 50.48 303.60
PI-3 529.17 552, 17 49.84 316.75
PI-4 536.83 559.83 54.47 323.36
Table 3  聚酰亚胺薄膜的热性能
Fig.3  薄膜的介电常数与频率的关系
Fig.4  聚酰亚胺薄膜的紫外-可见光谱
Film λ0/nm T450/% T500/%
PI-0 339 90.66 92.74
PI-1 338 90.31 92.67
PI-2 339 89.14 92.65
PI-3 348 88.03 92.46
PI-4 359 82.07 88.24
Table 4  薄膜的光学性能
Film Tensile strength/MPa Elongation at break/% Modulus of elasticity/GPa
PI-0 87.16 3.03 1.62
PI-1 95.31 2.69 1.76
PI-2 114.38 2.62 1.89
PI-3 125.35 2.44 2.12
PI-4 108.28 2.41 1.80
Table 5  薄膜的力学性能
1 MATIVENGA M , GENG D , KIM B , et al. Fully transparent and rollable electronics[J]. ACS Applied Materials&Interfaces, 2015, 7 (3): 1578- 1585.
2 CHEN J L , LIU C T . Technology advances in flexible displays and substrates[J]. IEEE Access, 2013, 1, 150- 158.
doi: 10.1109/ACCESS.2013.2260792
3 YOO H G , PARK K I , KOO M , et al. Flexible GaN LED on a polyimide substrate for display applications[J]. Proceedings of SPIE, 2012, 8268, 82681Y.
doi: 10.1117/12.904772
4 GHOSH D S , CHEN T L , MKHITARYAN V , et al. Ultrathin transparent conductive polyimide foil embedding silver nanowires[J]. ACS Applied Materials & Interfaces, 2014, 6 (23): 20943- 20498.
5 MEADOR M A , MALOW E J , SILVER R , et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine[J]. ACS Applied Materials & Interfaces, 2012, 4 (2): 536- 544.
6 QIU X M , WANG H Q , ZHOU C Y , et al. Polyimide/kaolinite composite films:synthesis and characterization of mechanical, thermal and waterproof properties[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45 (4): 2021- 2028.
doi: 10.1016/j.jtice.2014.01.012
7 DAMACEANU M D , SAVAI I , CONSTANTIN C P . The chromic and electrochemical response of CoCl2-filled polyimide materials for sensing applications[J]. Sensors & Actuators:B Chemical, 2016, 234, 549- 561.
8 刘含洋, 赵伟栋, 潘玲英, 等. 结构、耐热、透波功能一体化石英/聚酰亚胺研究[J]. 航空材料学报, 2015, 35 (4): 34- 38.
8 LIU H Y , ZHAO W D , PAN L Y , et al. Study on structure, heat resistence property and electromagnetic property of quartz fiber rein-forced polyimide composite[J]. Journal of Aeronautical Materials, 2015, 35 (4): 34- 38.
9 房光强, 沈登雄, 栗付平, 等. 聚酰亚胺/SiO2纳米复合抗原子氧气凝胶的合成与性能[J]. 材料工程, 2015, 43 (12): 17- 21.
9 FANG G Q , SHEN D X , LI F P , et al. Synthesis and properties of atomic-oxygen resistant polyimide-SiO2 nanocomposite aerogels[J]. Journal of Material and Engineering, 2015, 43 (12): 17- 21.
10 BESSONOV M I , ZUBKOV V A . Polyamic acids and poly-imides:synthesis, transformations, and structure[J]. Rusi Journal, 1993, 159 (6): 28- 32.
11 CHOIA H , SOHN B , CHANG J H . Synthesis and characteriza-tion of transparent copolyimide films containing CF3groups:comparison with copolyimide nanocomposites[J]. Aplied Clay Science, 2010, 48 (1): 117- 126.
12 吕静, 党智敏. 低热膨胀系数纳米碳化硅/聚酰亚胺复合薄膜的制备与性能[J]. 复合材料学报, 2011, 28 (5): 41- 45.
12 LV J , DANG Z M . Preparation and properties of nano-SiC/polyimide composite films with low thermal expansion char-acteristic[J]. Acta Materiae Compositae Sinica, 2011, 28 (5): 41- 45.
13 徐庆玉, 范和平, 王洛礼. 低热膨胀聚酰亚胺研究进展[J]. 高分子材料科学与工程, 2002, 18 (6): 29- 31.
doi: 10.3321/j.issn:1000-7555.2002.06.007
13 XU Q Y , FAN H P , WANG L L . Synthesis and characterization of macromoleclue with crosslinked structure[J]. Polymer Mater-ials Science and Engineering, 2002, 18 (6): 29- 31.
doi: 10.3321/j.issn:1000-7555.2002.06.007
14 NUMATA S , OOHARA S , IMAIZUMI J , et al. Thermal expan-sion behavior of various aromatic polyimide[J]. Journal of Applied Polymer Science, 2010, 31 (1): 101- 110.
15 SHANG Y M , FAN L , YANG S Y , et al. Synthesis and charac-terization of novel fluorinated polyimides derived from 4-phenyl-2, 6-bis[4-(4'-amino-2'-trifluoromethyl-phenoxy)phenyl] pyr-idine and dianhydrides[J]. Europe Polymer, 2006, 42 (5): 981- 989.
doi: 10.1016/j.eurpolymj.2005.11.015
16 俞娟, 蒋远媛, 阔正波, 等. 高模量、低热膨胀系数聚酞亚胺杂化薄膜的制备[J]. 材料导报, 2009, 23 (14): 58- 60.
16 YUE J , JIANG Y Y , KUO Z B , et al. Preparation of polyimide hybrid films with high modulus, low thermal expansion coeffi-cient[J]. Materials Review, 2009, 23 (14): 58- 60.
[1] 郭亚飞, 陶益杰, 梁高勇, 董梦杰, 王美慧, 郝新敏. 基于噻吩-蒽单元的无规共聚物电化学制备及其电致变色性能研究[J]. 材料工程, 2022, 50(11): 165-172.
[2] 易著武, 刘跃军, 刘小超, 杨坚, 李祥刚, 范淑红. 乙烯-乙烯醇共聚物/尼龙6复合材料的加工流变性能[J]. 材料工程, 2021, 49(8): 145-152.
[3] 刘家希, 石晓东, 姜良宝, 李晓宇, 王敏博, 颜悦. 陶瓷基透明防弹装甲研究进展[J]. 材料工程, 2021, 49(11): 30-40.
[4] 祝柏林, 郑思龙, 谢挺, 吴隽. 反应磁控溅射法制备F掺杂ZnO(FZO)薄膜的结构和透明导电性能[J]. 材料工程, 2021, 49(11): 98-104.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 辛华, 刘建芳, 杨江鹏, 张辉, 赵星. 成膜基材对含氟丙烯酸酯/聚氨酯复合乳液自组织梯度化结构的影响[J]. 材料工程, 2020, 48(3): 59-65.
[7] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[8] 桑冀蒙, 李学平, 赵瑾, 侯信, 原续波. P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征[J]. 材料工程, 2019, 47(8): 82-89.
[9] 马鹏飞, 王鑫, 李栋辉, 游峰, 江学良, 姚楚. 聚合物共混物增容技术及发展[J]. 材料工程, 2019, 47(2): 26-33.
[10] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 杨士勇, 陈祥宝. 黏度可控化制备BPDA-PDA型聚酰亚胺及表征[J]. 材料工程, 2019, 47(11): 100-106.
[11] 毛龙, 刘跃军, 姚进, 吴慧青, 白永康. 原位聚合改性纳米层状黏土/脂肪族聚酯嵌段共聚物复合材料的制备与性能[J]. 材料工程, 2018, 46(12): 70-77.
[12] 杜军, 宋永明, 张志军, 房轶群, 王伟宏, 王清文. MAH/GMA共接枝聚乳酸对木粉/PLA复合材料性能的影响[J]. 材料工程, 2017, 45(12): 30-36.
[13] 马强, 罗静, 陈元勋, 黄婧, 刘晓亚. 双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J]. 材料工程, 2016, 44(9): 109-114.
[14] 潘健, 肖长发, 赵健, 黄庆林, 任倩. 单轴取向乙烯-三氟氯乙烯共聚物纤维结晶结构与性能表征[J]. 材料工程, 2016, 44(7): 73-77.
[15] 梁银, 李朋, 裴旺, 段晋辉, 黄峰, 赵昆渝. 阳极氧化疏松钛膜制备高光催化活性的透明TiO2纳米多孔涂层[J]. 材料工程, 2016, 44(7): 99-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn