Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 34-41    DOI: 10.11868/j.issn.1001-4381.2019.000128
  综述 本期目录 | 过刊浏览 | 高级检索 |
工业燃气轮机涡轮叶片用铸造高温合金研究及应用进展
罗亮, 肖程波, 陈晶阳, 李青, 戴圣龙
中国航发北京航空材料研究院 先进高温结构材料重点实验室, 北京 100095
Research and application progress in casting superalloys for industrial gas turbine blades
LUO Liang, XIAO Cheng-bo, CHEN Jing-yang, LI Qing, DAI Sheng-long
Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(909 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 工业燃气轮机具有热效率高、污染低等突出优点,成为未来发电机组与大型水面舰船动力的首选设备。铸造高温合金是工业燃气轮机涡轮叶片等热端部件的关键材料,其性能和制备水平在一定程度上决定了先进燃气轮机的功率、效率、寿命等性能。本文重点综述了工业燃气轮机及其涡轮叶片用铸造高温合金材料的研究及应用现状,并对工业燃气轮机涡轮叶片用铸造高温合金及涡轮叶片制造技术的发展趋势进行了展望。未来,先进定向凝固,"材料基因工程"等技术将逐渐应用到工业燃气轮机涡轮叶片用铸造高温合金的研制中;此外,先进工业燃气轮机上定向/单晶高温合金的应用将越来越广泛。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗亮
肖程波
陈晶阳
李青
戴圣龙
关键词 工业燃气轮机涡轮叶片铸造高温合金    
Abstract:Advanced industrial gas turbines are becoming preferred devices for worldwide power generations and large ship power in recent decades due to its outstanding advantages of high thermal efficiency and low pollution. Casting superalloy is the key material for industrial gas turbine blades in hot section components, and to a certain extent their performance and preparation level determine the levels of power, efficiency and service life of the industrial gas turbines. This paper outlines the current research and application status and shows the development trends of manufacturing technology of casting superalloy for industrial gas turbines and turbine blades. In the future, technologies such as advanced directional solidification and "materials genome engineering" will be used in the research and manufacture of casting superalloy for industrial gas turbine blades. Meanwhile, the directional and single crystal superalloy will be used more and more widely in advanced industrial gas turbines.
Key wordsindustrial gas turbine    turbine blade    casting superalloy
收稿日期: 2019-01-05      出版日期: 2019-06-17
中图分类号:  TG146.1  
通讯作者: 肖程波(1970-),男,研究员,博士,研究方向为高温结构材料,联系地址:北京市81信箱1分箱(100095),E-mail:cbxiao0288@sina.com     E-mail: cbxiao0288@sina.com
引用本文:   
罗亮, 肖程波, 陈晶阳, 李青, 戴圣龙. 工业燃气轮机涡轮叶片用铸造高温合金研究及应用进展[J]. 材料工程, 2019, 47(6): 34-41.
LUO Liang, XIAO Cheng-bo, CHEN Jing-yang, LI Qing, DAI Sheng-long. Research and application progress in casting superalloys for industrial gas turbine blades. Journal of Materials Engineering, 2019, 47(6): 34-41.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000128      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/34
[1] KONTER M, THUMANN M. Materials and manufacturing of advanced industrial gas turbine components[J]. Journal of Materials Processing Technology, 2001, 117(3):386-390.
[2] 李孝堂. 燃气轮机的发展及中国的困局[J]. 航空发动机, 2011, 37(3):1-7. LI X T. Development of gas turbine and dilemma in China[J]. Aero Engine, 2011, 37(3):1-7.
[3] 蒋洪德,任静,李雪英,等. 重型燃气轮机现状与发展趋势[J]. 中国电机工程学报, 2014, 34(29):5096-5102. JIANG H D, REN J, LI X Y, et al. Status and development trend of the heavy duty gas turbine[J]. Proceedings of the CSEE, 2014, 34(29):5096-5102.
[4] REED R C. The superalloys:fundamentals and applications[M]. Cambridge, UK:Cambridge University Press, 2006.
[5] POLLOCK T M, TIN S. Nickel-based superalloys for advanced turbine engines:chemistry, microstructure, and properties[J]. Journal of Propulsion and Power, 2006, 22(2):361-374.
[6] 刘丽玉,高翔宇,杨宪锋,等. DD6单晶高温合金振动疲劳性能及断裂机理[J]. 材料工程, 2018, 46(2):128-133. LIU L Y, GAO X Y, YANG X F, et al. Vibration fatigue properties and fracture mechanism of DD6 single crystal superalloy[J]. Journal of Materials Engineering, 2018, 46(2):128-133.
[7] 胡春燕,刘新灵,陶春虎,等. 气膜孔分布对DD6单晶高温合金高周疲劳断裂行为的影响[J]. 材料工程, 2017, 45(4):84-89. HU C Y, LIU X L, TAO C H, et al. Influence of cooling holes distribution on high cycle fatigue fracture behavior of DD6 single crystal superalloy[J]. Journal of Materials Engineering, 2017, 45(4):84-89.
[8] 曹腊梅,汤鑫,张勇,等. 先进高温合金近净形熔模精密铸造技术进展[J]. 航空材料学报, 2006, 26(3):238-243. CAO L M, TANG X, ZHANG Y, et al. Progress of advanced near net-shape investment casting technology of superalloys[J]. Journal of Aeronautical Materials, 2006, 26(3):238-243.
[9] SINGH K. Advanced materials for land based gas turbines[J]. Transactions of the Indian Institute of Metals, 2014, 67(5):601-615.
[10] SHAH D M, CETEL A. Evaluation of PWA1483 for large single crystal IGT blade applications[C]//Superalloys 2000. Warrendale:Minerals, Metals & Materials Soc, 2000:295-304.
[11] HARRIS K, ERICKSON G L, SIKKENGA S L, et al. Develo-pment of the rhenium containing superalloys CMSX-4& CM 186 LC for single crystal blade and directionally solidified vane applications in advanced turbine engines[C]//Superalloys 1992. Warrendale:Minerals,Metals & Materials Soc,1992:297-306.
[12] CHERUVU N S, CHAN K S, VISWANATHAN R. Evalua-tion, degradation and life assessment of coatings for land based combustion turbines[J]. Energy Materials, 2006, 1(1):33-47.
[13] 杜剑维,汤建华,李南. 国外舰船动力装置技术发展现状及趋势[J]. 舰船科学技术, 2010, 32(8):13-19. DU J W, TANG J H, LI N. Study on the development status and trend of foreign marine power plant technology[J]. Ship Science and Technology, 2010, 32(8):13-19.
[14] 吉桂明,李汇文. 船舶燃气轮机技术和应用的展望[J]. 舰船科学技术, 2000(5):36-40. JI G M, LI H W. Forecast of the technology and application of ship gas turbine[J].Ship Science and Technology, 2000(5):36-40.
[15] MAEKAWA A. Evolution and future trend of large frame gas turbine for power generation[J]. Journal of Power and Energy Systems, 2011, 5(2):161-170.
[16] 陈国锋. 重型燃气轮机发电机组制造用材料现状及发展趋势[J]. 燃气轮机发电技术, 2008, 10(3/4):310-313. CHEN G F. Current status and developing trend of materials in heavy duty gas turbine for power generation[J]. Power Generation Technology of Gas Turbine, 2008, 10(3/4):310-313.
[17] 闻雪友,王明为,刘培栋. 日本新一代船用燃气轮机(SMGT)研究计划[J]. 船舶工程, 2003, 25(1):6-8. WEN X Y, WANG M W, LIU P D. R&D plan for next-generation marine gas turbine of Japan[J]. Ship Engineering, 2003, 25(1):6-8.
[18] 王巍巍,郭琦,黄顺洲. IHPTET计划的先进项目管理方法[J]. 燃气涡轮试验与研究, 2011, 24(2):58-62. WANG W W, GUO Q, HUANG S Z. Advanced management method of IHPTET program[J]. Gas Turbine Experiment and Research, 2011, 24(2):58-62.
[19] 陈玉洁. 新型航改燃气轮机技术在地面发电中的应用[J]. 燃气涡轮试验与研究, 2012, 25(S0):52-54. CHEN Y J. New Aero-derivative gas turbine technology in power generation[J]. Gas Turbine Experiment and Research, 2012, 25(S0):52-54.
[20] 任维鹏,李青,肖程波,等. DZ466合金热障涂层CoCrAlY黏结层1050℃氧化行为[J]. 材料工程, 2014(6):74-78. REN W P, LI Q, XIAO C B, et al. Oxidation behavior of CoCrAlY bond coating for thermal barrier coating on DZ466 super alloy at 1050℃[J]. Materials Engineering, 2014(6):74-78.
[21] 任维鹏,李青,黄强,等. 定向凝固镍基高温合金DZ466表面CoAl涂层的氧化及组织演变[J]. 金属学报, 2018, 54(4):566-574. REN W P, LI Q, HUANG Q, et al. Oxidation and microstructure evolution of CoAl coating on directionally solidified Ni-based superalloys DZ466[J]. Acta Metallurgica Sinica, 2018, 54(4):566-574.
[22] 陈晶阳,吴文津,李青,等. LMC法定向凝固抽拉速率对DD488单晶高温合金组织和持久性能的影响[J]. 金属热处理, 2018, 43(6):111-116. CHEN J Y, WU W J, LI Q, et al. Effect of withdrawal rate of LMC process on microstructure and stress-rupture property of DD488 single crystal superalloy[J]. Heat Treatment of Metals, 2018, 43(6):111-116.
[23] LUO L, XIAO C B, CHEN J Y, et al. Effect of directional solidification process on microstructure and stress rupture property of a hot corrosion resistant single crystal superalloy[J]. China Foundry, 2019, 16(1):8-13.
[24] 李辉,任建军,楼琅洪,等. 固溶处理对DSM11合金显微组织和力学性能的影响[J]. 钢铁研究学报, 2003, 15(7):212-215. LI H, REN J J, LOU L H, et al. Effect of solution treatment on microstructure and properties of DSM11 alloy[J]. Journal of Iron and Steel Research, 2003, 15(7):212-215.
[25] 张雅静,刘丽,史学军,等. 中间热处理温度对DSM11合金组织和性能的影响[J]. 钢铁研究学报, 2003, 15(7):216-218. ZHANG Y J, LIU L, SHI X J, et al. Effeet of middle heat treatment temperature on microstructure and properties of alloy DSM11[J]. Journal of Iron and Steel Research, 2003, 15(7):216-218.
[26] 李辉,楼琅洪,史学军,等. DZ411(DSM11)合金γ'粗化与持久性能[C]//第十一届中国高温合金年会. 上海:中国金属学会高温材料分会, 2007:392-394. LI H, LOU L H, SHI X J, et al. γ' coarsening and stress rupture property of DZ411(DSM11) alloy[C]//The 11th meeting on superalloys in China. Shanghai:Superalloy Division of the Chinese Society for Metals, 2007:392-394.
[27] 曾广亮,管恒荣,孙晓峰,等. DD8及DZ38G合金的热腐蚀研究[J]. 腐蚀科学与防护技术, 1993, 5(2):81-86. ZENG G L, GUAN H R, SUN X F, et al. Na2SO4-induced hot corrosion of superalloys DD8 and DZ38G[J]. Corrosion Science and Protection Technique, 1993, 5(2):81-86.
[28] CHENG K Y, KIM D H, YOO Y S, et al. Microstructural stability of a single crystal superalloy DD8 during thermal exposure[J]. Journal of Materials Science & Technology, 2008, 24(1):127-130.
[29] LIU F, WANG Z G, AI S H, et al. Thermo-mechanical fatigue of single crystal nickel-based superalloy DD8[J]. Scripta Materialia, 2003, 48(9):1265-1270.
[30] 丛培娟,侯介山,周兰章,等. 偏离度对抗热腐蚀单晶高温合金DD483拉伸性能的影响[J]. 中国有色金属学报, 2011, 21(4):747-753. CONG P J, HOU J S, ZHOU L Z, et al. Effects of disorientation on tensile properties of hot corrosion resistant single crystal superalloy DD483[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(4):747-753.
[31] 马德新,张琼元,王海洋,等. 工艺条件对镍基高温合金DD483单晶叶片中杂晶缺陷的影响[J]. 铸造, 2017, 66(5):439-444. MA D X, ZHANG Q Y, WANG H Y, et al. Influence of process condition on the stray grain formation in the single crystal blades of Ni-base superalloy DD483[J]. Foundry, 2017, 66(5):439-444.
[32] IBANEZ A R, SRINIVASAN V S, SAXENA A. Creep defor-mation and rupture behaviour of directionally solidified GTD 111 superalloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(12):1110-1020.
[33] STEWART C M, GORDON A P, HOGAN E A, et al. Characterization of the creep deformation and rupture behavior of DS GTD-111 using the Kachanov-Rabotnov constitutive model[J]. Journal of Engineering Materials and Technology, 2011, 133(2):021013-1-021013-11.
[34] WALSTON W S, O'HARA K S, ROSS E W, et al. René N6:third generation single crystal superalloy[C]//Superalloys 1996. Warrendale:Minerals, Metals & Materials Soc, 1996:27-34.
[35] GIAMEI A F, TSCHINKEL J G. Liquid metal cooling:A new solidification technique[J]. Metallurgical Transactions A, 1976, 7(9):1427-1434.
[36] ELLIOTT A J, POLLOCK T M, TIN S, et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling:a comparative assessment[J]. Metallurgical and Materials Transactions A, 2004, 35(10):3221-3231.
[37] KONTER M, KARTS E, HOFMANN N. A novel casting process for single crstal gas turbine components[C]//Super-alloys 2000. Warrendale:Minerals, Metals & Materials Soc, 2000:189-200.
[38] MA D. Novel casting processes for single-crystal turbine blades of superalloys[J]. Frontiers of Mechanical Engineering, 2018, 13(1):3-16.
[39] MA D, LU H, POLACZEK A B. Experimental trials of the thin shell casting (TSC) technology for directional solidification[J]. IOP Conference Series:Materials Science and Engineering, 2011, 27:1-6.
[40] MA D, WANG F, WU Q, et al. Innovations in casting techniques for single crystal turbune blades of superalloys[C]//Superalloys 2016. Warrendale:Minerals, Metals & Materials Soc, 2016:237-246.
[41] WANG F, MA D X, ZHANG J, et al. A high thermal gradient directional solidification method for growing superalloy single crystals[J]. Journal of Materials Processing Technology, 2014, 214(12):3112-3121.
[42] HOFMEISTER M, FRANKE M M, KOERNER C, et al. Single crystal casting with fluidized carbon bed cooling:a process innovation for quality improvement and cost reduction[J]. Metallurgical and Materials Transactions B, 2017, 48(6):3132-3142.
[43] LIU C, SHEN J, ZHANG J, et al. Effect of withdrawal rates on microstructure and creep strength of a single crystal superalloy processed by LMC[J]. Journal of Materials Science and Technology, 2010, 26(4):306-310.
[44] LIU C, LI K, SHEN J, et al. Improved castability of directio-nally solidified, Ni-based superalloy by the liquid metal cooling process[J]. Metallurgical and Materials Transactions A, 2012, 43(2):405-409.
[45] 刘金洪,刘林,黄太文,等. 液态金属冷却定向凝固设备的研制[J]. 铸造, 2010, 59(8):822-825. LIU J H, LIU L, HUANG T W, et al. Development of directional solidification equipment with liquid metal cooling[J]. Foundry, 2010, 59(8):822-825.
[46] 郭如峰,刘林,李亚峰,等. 液态金属冷却法制备DD403合金过程温度场和晶粒组织的数值模拟[J].铸造,2014,63(2):145-151. GUO R F, LIU L, LI Y F, et al. Numerical simulation of temperature field and grain texture during casting single crystal superalloy DD403 with liquid metal cooling[J]. Foundry, 2014, 63(2):145-151.
[47] LIU X F, LOU Y C, YU B, et al. Directional solidification casting technology of heavy-duty gas turbine blade with liquid metal cooling (LMC) process[J]. China Foundry, 2019, 16(1):23-30.
[48] 武魏楠. 暴利燃机[J]. 能源, 2015(5):32-40. WU W N. Windfall profit of gas turbine[J]. Energy, 2015(5):32-40.
[49] BACKMAN D G, WEI D Y, WHITIS D D, et al. ICME at GE:accelerating the insertion of new materials and processes[J]. JOM, 2006, 58(11):36-41.
[50] REED R C, TAO T, WARNKEN N. Alloys-by-design:applic-ation to nickel-based single crystal superalloys[J]. Acta Materialia, 2009, 57(19):5898-5913.
[51] 王薪,朱礼龙,方姣,等. 基于"材料基因组工程"的3种方法在镍基高温合金中的应用[J]. 科技导报, 2015, 33(10):79-86. WANG X,ZHU L L,FANG J,et al.Applications of "materials genome engineering" based methods in nickel-based superalloys[J]. Science & Technology Review, 2015, 33(10):79-86.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 郭小童, 郑为为, 肖程波, 郑运荣, 冯强. K465高温合金短时超温后的显微组织退化及拉伸性能[J]. 材料工程, 2018, 46(10): 77-86.
[3] 付超, 冯微, 童锦艳, 郑运荣, 冯强. GH4033涡轮叶片服役1600h后的显微组织及力学性能评价[J]. 材料工程, 2016, 44(6): 84-91.
[4] 赵文侠, 李莹, 范映伟, 郑运荣. 涡扇发动机二级转子叶片超温断裂分析[J]. 材料工程, 2012, 0(8): 39-44.
[5] 石照夏, 董建新, 张麦仓. 汽车增压器涡轮用铸造高温合金热裂研究进展[J]. 材料工程, 2012, 0(6): 91-96.
[6] 梁海, 毛唯, 孙计生. K465铸造高温合金高温钎焊接头的显微组织[J]. 材料工程, 2005, 0(9): 7-10,15.
[7] 李建平, 陆峰, 蔡妍, 李伟光. 空心叶片内腔化学气相沉积设备及抗氧化涂层研究[J]. 材料工程, 2005, 0(10): 38-41.
[8] 严卫东, 刘汉武, 熊玉华, 杨爱民, 刘林. 非定向熔模铸造过程中高温合金叶片晶粒组织的计算机模拟[J]. 材料工程, 2002, 0(4): 43-47.
[9] 韩梅. 细晶铸造K403合金热处理工艺的研究[J]. 材料工程, 2001, 0(10): 45-47.
[10] 殷克勤. 提高铸造高温合金及其精铸件纯洁度的途径[J]. 材料工程, 1999, 0(7): 47-49.
[11] 郑运荣, 阮中慈. K403合金铸造涡轮叶片热裂的研究[J]. 材料工程, 1998, 0(11): 33-37.
[12] 陈荣章. 北京航空材料研究院铸造高温合金及工艺发展40年[J]. 材料工程, 1998, 0(10): 3-10,18.
[13] 殷克勤. 我国航空涡轮高温材料及工艺进展[J]. 材料工程, 1997, 0(9): 3-5,12.
[14] 唐定中, 叶国胜, 吴仲堂, 吴学仁, Li-sen(Jim), LinA. D. Cetel, D. N. Duhl. DD3单晶合金的评估[J]. 材料工程, 1997, 0(9): 6-8,12.
[15] 徐劲松. 地面燃机涡轮叶片和导向叶片涂层的应用[J]. 材料工程, 1997, 0(2): 36-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn