Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 64-70    DOI: 10.11868/j.issn.1001-4381.2018.000452
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能
张平生1,2, 辛勇1, 曹传亮1, 艾凡荣1
1. 南昌大学 机电工程学院, 南昌 330031;
2. 南昌航空大学 航空制造工程学院, 南昌 330063
Preparation and properties of polycaprolactone porous bone scaffold modified with chitosan/ hydroxyapatite on the surface
ZHANG Ping-sheng1,2, XIN Yong1, CAO Chuan-liang1, AI Fan-rong1
1. School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China;
2. School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(14447 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用选择性激光烧结技术构建多孔聚己内酯(PCL)骨支架,用原位合成的方法制得壳聚糖/羟基磷灰石(CS/HA)悬浮液,并采用真空浸泡、低速离心和冷冻凝胶的方法使CS/HA黏附在PCL支架的表面,以改善骨支架的生物相容性和细胞增殖活性。通过X射线衍射(XRD)和扫描电子显微镜(SEM)观测复合支架的物相和形貌,测量支架的压缩强度和杨氏模量,测量支架表面的水接触角,并通过体外细胞实验研究复合支架的生物学性能。实验结果表明,原位合成的方法制得了羟基磷灰石(HA);CS/HA凝胶与PCL骨支架表面黏附良好;CS/HA改善了PCL支架表面的亲水性,提升了骨支架的生物相容性和细胞增殖活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张平生
辛勇
曹传亮
艾凡荣
关键词 聚己内酯-壳聚糖/羟基磷灰石(PCL-CS/HA)骨支架表面修饰选择性激光烧结(SLS)原位合成冷冻凝胶    
Abstract:Porous polycaprolactone (PCL) bone scaffolds were prepared by selective laser sintering and chitosan/hydroxyapatite(CS/HA) suspension was prepared by in situ synthesis. The CS/HA was attached to the surface of the PCL scaffold by vacuum immersion, low speed centrifugation and freezing gel, to improve the biocompatibility and cell proliferation activity of the PCL scaffolds. The phase and porous structure of the composite scaffolds were observed by X ray diffraction (XRD) and scanning electron microscopy (SEM). The compressive strength and Young's modulus of the scaffolds were measured, the water contact angles on the surface of the scaffolds were measured and the biological properties of the composite scaffolds were studied by in vitro cell experiments. The experimental results show that hydroxyapatite (HA) is prepared by in situ synthesis, and CS/HA gel adhered well to the surface of PCL bone scaffold. The hydrophilicity of the surface of the PCL scaffold is improved by CS/HA, and the biocompatibility and cell proliferation activity of them are greatly enhanced.
Key wordspolycaprolactone-chitosan/hydroxyapatite(PCL-CS/HA)    bone scaffold    surface modifica-tion    selective laser sintering(SLS)    in situ synthesis    frozen gel
收稿日期: 2018-04-23      出版日期: 2019-07-19
中图分类号:  TB321  
通讯作者: 辛勇(1959-),男,教授,博士,主要从事高分子材料成型CAD/CAE/KBE与生物材料快速成型技术,联系地址:江西省南昌市红谷滩新区学府大道999号南昌大学机电学院(330031),xinyong_sh@sina.com     E-mail: xinyong_sh@sina.com
引用本文:   
张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
ZHANG Ping-sheng, XIN Yong, CAO Chuan-liang, AI Fan-rong. Preparation and properties of polycaprolactone porous bone scaffold modified with chitosan/ hydroxyapatite on the surface. Journal of Materials Engineering, 2019, 47(7): 64-70.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000452      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/64
[1] MITHOEFER K, MCADAMS T R, SCOPP J M, et al. Emerging options for treatment of articular cartilage injury in the athlete[J]. Clinics in Sports Medicine, 2009, 28(1):25-40.
[2] VAN D P U, MATHIEU L, ZEITER S, et al. Augmentation of bone defect healing using a new biocomposite scaffold:an in vivo study in sheep[J]. Acta Biomaterialia, 2010, 6(9):3755-3762.
[3] 秦晓素,黄洁,郭华超,等. 骨组织工程用硅胶/掺锶β-磷酸三钙/硫酸钙复合多孔支架的制备与性能研究[J]. 材料工程, 2018, 46(3):34-40. QIN X S,HUANG J,GUO H C, et al. Fabrication and properties of silica gel/calcium sulfate/strontium-doped β-tricalcium phosp-hate composite porous scaffolds for bone tissue engineering[J].Journal of Materials Engineering,2018,46(3):34-40.
[4] CUNNIFFE G M, VINARDELL T, MURPHY J M, et al. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing[J]. Acta Biomaterialia, 2015, 23:82-90.
[5] SATHY B N, WATSON B M, KINARD L A, et al. Bone tissue engineering with multilayered scaffolds-part Ⅱ:combining vascularization with bone formation in critical-sized bone defect[J]. Tissue Engineering Part A, 2015, 21(19/20):2495-2503.
[6] MAZZOLI A, FERRETTI C, GIGANTE A, et al. Selective laser sintering manufacturing of polycaprolactone bone scaffolds for applications in bone tissue engineering[J]. Rapid Prototyping Journal, 2015, 21(4):386-392.
[7] WILLIAMS J M, ADEWUNMI A, SCHEK R M, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering[J]. Biomaterials, 2005, 26(23):4817-4827.
[8] ZHANG Y, VENUGOPAL J R, EL-TURKI A, et al. Electro-spun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering[J]. Biomaterials, 2008, 29(32):4314-4322.
[9] QIAO Y, ZHAI Z, CHEN L, et al. Cytocompatible 3D chitosan/hydroxyapatite composites endowed with antibacterial properties:toward a self-sterilized bone tissue engineering scaffold[J]. Science bulletin, 2015, 60(13):1193-1202.
[10] 王朴,杜继涛. 电流密度对水热电化学沉积HA涂层性能的影响[J]. 材料工程, 2018, 46(4):58-65. WANG P,DU J T. Effect of current density on properties of HA coating fabricated by hydrothermal-electrochemical deposition[J]. Journal of Materials Engineering,2018, 46(4):58-65.
[11] TOKATLI K, DEMIRDOVEN A. Characterization of two commercial chitosans[J]. Journal of Biotechnology, 2017, 256:S65-S66.
[12] SABER-SAMANDARI S, SABER-SAMANDARI S. Biocomp-atible nanocomposite scaffolds based on copolymer-grafted chitosan for bone tissue engineering with drug delivery capability[J]. Materials Science and Engineering:C, 2017, 75:721-732.
[13] OLIVEIRA J M, RODRIGUES M T, SILVA S S, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications:scaffold design and its perform-ance when seeded with goat bone marrow stromal cells[J]. Biomaterials, 2006, 27(36):6123-6137.
[14] ROGINA A, PRIBOLSAN L, HANZEK A, et al. Macroporous poly (lactic acid) construct supporting the osteoinductive porous chitosan-based hydrogel for bone tissue engineering[J]. Poly-mer, 2016, 98:172-181.
[15] 黄琼瑜,余厚德,肖秀峰,等. 羟基磷灰石/聚己内酯-壳聚糖复合材料的制备与表征[J]. 复合材料学报, 2009(1):24-30. HUANG Q Y,SHE H D,XIAO X F, et al. Preparation and characterization of hydroxyapatite/polycaprolacton-chitosan com-posites[J]. Journal of Composite Materials, 2009(1):24-30.
[16] 林宗琼,肖秀峰,佘厚德,等. 纳米羟基磷灰石/聚己内酯-壳聚糖复合多孔支架材料的制备与表征[J]. 高分子材料科学与工程, 2008, 24(10):155-158. LIN Z Q,XIAO X F,SHE H D, et al. Preparation and charac-terization of hydroxyapatite/polycaprolactone-chitosan composite porous scaffold[J].Polymer Materials Science and Engineering, 2008, 24(10):155-158.
[17] 福建师范大学.聚己内酯-壳聚糖网络/羟基磷灰石复合多孔支架材料的制备方法:ZL200710085930.1[P].2007-08-15. Fujian Normal University.Preparation of polycaprolactone chito-san network/hydroxyapatite composite porous scaffold material:china,ZL200710085930.1[P].2007-08-15.
[18] 周泽全,辛勇,曹传亮. 选择性激光烧结尼龙-12/聚苯乙烯复合材料[J]. 材料研究学报, 2016, 30(10):759-762. ZHOU Z Q,XIN Y,CAO C L. Research of the selective laser sintering of nylon-12/polystyrene composite powder[J].Chinese Journal of Material Research, 2016, 30(10):759-762.
[19] LAPORTE D M, MONT M A, HUNGERFORD D S. Proxim-ally porous-coated ingrowth prostheses:limits of use[J]. Orth-opedics, 1999, 22(12):1154-1160.
[20] KALEBO P, BUCH F, ALBREKTSSON T. Bone-formation rate in osseointegrated titanium implants-influence of locally applied hemostasis, peripheral-blood, autologous bone-marrow and fibrin adhesive system(FAS)[J]. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1988, 22(1):53-60.
[21] 樊宇平,黄靖香,蔡胥. 中空钛合金假体壁上孔洞直径对细胞生长的影响[J]. 中国组织工程研究, 2012, 16(43):8067-8070. FAN Y P,HUANG J X,CAI X. Effect of different pore sizes of hollow titanium alloy prosthesis's wall on the growth of bone narrow stromal cells[J]. Research on Organizational Engineer-ing in China, 2012,16(43):8067-8070.
[22] 王倞,李元超,汪方,等. 人体松质骨矿质密度与弹性模量关系[J]. 医用生物力学, 2014,29(5):465-470. WANG Q,LI Y C,WANG F, et al. Relationship between mine-ral density and elastic modulus of human cancellous bone[J].Journal of Medical Biomechanics, 2014,29(5):465-470.
[23] MORGAN E F, BAYRAKTAR H H, KEAVENY T M. Trab-ecular bone modulus-density relationships depend on anatomic site[J]. Journal of Biomechanics, 2003, 36(7):897-904.
[24] KOPPERDAHL D L, KEAVENY T M. Yield strain behavior of trabecular bone[J]. Journal of biomechanics, 1998, 31(7):601-608.
[25] REZWAN K, CHEN Q Z, BLAKER J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials, 2006, 27(18):3413-3431.
[26] GOGOLEWSKI S, GORNA K, ZACZYNSKA E, et al. Stru-cture-property relations and cytotoxicity of isosorbide-based biodegradable polyurethane scaffolds for tissue repair and regen-eration[J]. Journal of Biomedical Materials Research Part A, 2008, 85(2):456-465.
[1] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[2] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[3] 桑冀蒙, 李学平, 赵瑾, 侯信, 原续波. P(AA-co-MPC)修饰超顺磁性Fe3O4纳米粒子的制备与表征[J]. 材料工程, 2019, 47(8): 82-89.
[4] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[5] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[6] 周仲炎, 庄宿国, 杨霞辉, 王勉, 罗迎社, 刘煜, 刘秀波. Ti6Al4V合金激光原位合成自润滑复合涂层高温摩擦学性能[J]. 材料工程, 2019, 47(3): 101-108.
[7] 税玥, 冯可芹, 岳慧芳, 张燕燕, 严子迪. Ni含量对钒钛磁铁矿原位合成制备铁基摩擦材料的影响[J]. 材料工程, 2018, 46(9): 73-79.
[8] 云亮, 刘峥, 李海莹, 王浩, 钟寒阳. 原位合成壳聚糖复合炭材料及其在铅碳电池中的应用[J]. 材料工程, 2018, 46(8): 57-63.
[9] 王昊, 张辉, 张继华, 赵云峰. 非共价键表面修饰的石墨烯/聚合物复合材料研究进展[J]. 材料工程, 2018, 46(7): 44-52.
[10] 刘政军, 贾华, 李萌. 自保护药芯焊丝堆焊原位合成TiB2-TiC颗粒对堆焊合金组织性能的影响[J]. 材料工程, 2018, 46(7): 106-112.
[11] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
[12] 于文霖, 吴一, 吴新泽, 莫培程, 虞琦峰. 烧结温度对cBN-Al-Ti体系原位合成PcBN的影响[J]. 材料工程, 2018, 46(11): 90-95.
[13] 熊俊杰, 闫洪. Al-Ti体系原位合成Al3Ti/ADC12复合材料[J]. 材料工程, 2017, 45(8): 30-37.
[14] 龙伟民, 路全彬, 何鹏, 薛松柏, 吴铭方, 薛鹏. 钎焊过程原位合成Al-Si-Cu合金及接头性能[J]. 材料工程, 2016, 44(6): 17-23.
[15] 景鹏展, 朱姝, 余木火, 袁象恺, 刘卫平, 姜正飞. 基于碳纤维表面修饰制备碳纤维织物增强聚苯硫醚(CFF/PPS)热塑性复合材料[J]. 材料工程, 2016, 44(3): 21-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn