Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 97-102    DOI: 10.11868/j.issn.1001-4381.2018.000925
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
球状纳米二氧化钛/石墨烯复合材料的合成及导电性能
刘琳1, 李莹1, 鄂涛1, 杨姝宜1, 姜志刚2, 许丽岩2, 张天琪3
1. 渤海大学 辽宁省功能化合物合成与应用重点实验室, 辽宁 锦州 121013;
2. 锦州中信钛业股份有限公司, 辽宁 锦州 121000;
3. 大连晨致方舟科技发展有限公司, 辽宁 大连 116600
Synthesis and electrical conductivity of spherical nano-TiO2/graphene composites
LIU Lin1, LI Ying1, E Tao1, YANG Shu-yi1, JIANG Zhi-gang2, XU Li-yan2, ZHANG Tian-qi3
1. Liaoning Province Key Laboratory for Synthesis and Application of Functional Compounds, Bohai University, Jinzhou 121013, Liaoning, China;
2. Jinzhou Zhongxin Titanium Industry Co., Ltd., Jinzhou 121000, Liaoning, China;
3. Dalian Chenzhi Ark Science and Technology Development Co., Ltd., Dalian 116600, Liaoning, China
全文: PDF(1890 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用改进的水热法制备二氧化钛/石墨烯(TiO2/G)复合导电材料,并研究水热温度以及石墨烯用量对TiO2/G复合材料导电性的影响。利用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和电化学阻抗谱等测试手段对复合材料的结构,微观形貌以及导电性能进行表征,并确定最佳的水热温度以及石墨烯的最佳添加量。结果表明:石墨烯添加量为5%(质量分数),水热温度为160℃,TiO2/G复合材料的导电性最佳,其电阻率为13.46Ω·cm。复合材料中TiO2纳米颗粒为球状的锐钛矿相,直径为100~200nm左右,且均匀生长在石墨烯片层表面。其中,TiO2纳米颗粒生长于石墨烯片层上,有效地阻止石墨烯片层的聚集,有利于石墨烯片层间形成导电网络,提高电子迁移效率,赋予二氧化钛复合材料优异的导电性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘琳
李莹
鄂涛
杨姝宜
姜志刚
许丽岩
张天琪
关键词 石墨烯二氧化钛导电性水热法复合导电材料    
Abstract:Titanium dioxide/graphene (TiO2/G) composite conductive materials were prepared by modified hydrothermal method. The effects of hydrothermal temperature and the amount of graphene on the electrical conductivity of the composites were investigated. The structure, microstructure and conductivity of the composites were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and so on, and the optimum hydrothermal temperature and the optimum doping amount of graphene were determined. The results show that the electrical conductivity of TiO2/G is the best when the content of graphene is 5% (mass fraction), the hydrothermal temperature is 160℃, and its resistivity is 13.46Ω·cm. The nano TiO2 in the composite is a spherical anatase phase with a diameter of about 100-200nm, and it is grown uniformly on the lamellar surface of graphene. Among them, the nano TiO2 is grown on the graphene layers, which effectively prevents the agglomeration of the graphene layer, which is beneficial to the formation of conductive network between the graphene layers, improves the efficiency of electron migration, and endows the titanium dioxide composites with excellent electrical conductivity.
Key wordsgraphene    titanium dioxide    conductivity    hydrothermal method    composite conductive mat-erial
收稿日期: 2018-07-30      出版日期: 2019-08-22
中图分类号:  TQ15  
通讯作者: 鄂涛(1983-),男,副教授,博士,研究方向为石墨烯复合材料,联系地址:辽宁省锦州市太和区科技路19号渤海大学化学化工学院(121013),E-mail:263067201@qq.com     E-mail: 263067201@qq.com
引用本文:   
刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
LIU Lin, LI Ying, E Tao, YANG Shu-yi, JIANG Zhi-gang, XU Li-yan, ZHANG Tian-qi. Synthesis and electrical conductivity of spherical nano-TiO2/graphene composites. Journal of Materials Engineering, 2019, 47(8): 97-102.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000925      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/97
[1] 汪静茹,李文尧,姚宝殿. 水热法制备二氧化钛纳米管:形成机理、影响因素及应用[J]. 材料导报, 2016, 30(5):144-152. WANG J R, LI W Y, YAO B D. Hydrothermally produced titania nanotubes:formation mechanism, influence factorsand applications[J]. Materials Review, 2016, 30(5):144-152.
[2] HU J, LI H S, MUHAMMAD S, et al. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanoco-mposites and their photocatalytic performances[J]. Journal of Solid State Chemistry, 2017, 253:113-120.
[3] TACHIKAWA T, MINOHARA M, HIKITA Y, et al. Tuning band alignment using interface dipoles at the Pt/anatase TiO2 interface[J]. Advanced Materials, 2015, 27(45):7458-7461.
[4] CHEN B, MENG Y H, SHA J W, et al. Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries:progress, challenges, and perspective[J]. Nanoscale, 2017, 10(4):34-68.
[5] ZHANG L X, ZHANG J, JIU H F, et al. Graphene-based hollow TiO2 composites with enhanced photocatalytic activity for removal of pollutants[J]. Journal of Physics and Chemistry of Solids, 2015, 86:82-89.
[6] GAN Z, WU X, MENG M, et al. Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites[J]. ACS Nano, 2014, 8(9):9304-9310.
[7] GU W L, LU F X, WANG C, et al. Face-to-face interfacial assembly of ultrathin g-C3N4 and anatase TiO2 nanosheets for enhanced solar photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2017, 9(34):28674-28684.
[8] ZHANG Z, REN L, HAN W J, et al. One-pot electrodeposition synthesis of ZnO/graphene composite and its use as binder-free electrode for supercapacitor[J]. Ceramics International, 2015, 41(3):4374-4380.
[9] ZHENG C C, HE C H, ZHANG H Y, et al. TiO2-reduced graphene oxide nanocomposite for high-rate application of lithium ion batteries[J]. Ionics, 2014, 21(1):51-58.
[10] WANG H M, YAN Y, CHEN G. Integrating the hierarchical structure with well-dispersed conductive agents to realize synerg-istically enhanced electrode performance[J]. Journal of Materials Chemistry A, 2015, 3(19):10275-10283.
[11] RAMACHANDRAN R, MANI V, CHEN S M, et al. Recent trends in graphene based electrode materials for energy storage devices and sensors applications[J]. International Journal of Electrochemical Science, 2013, 8(8):11680-11694.
[12] 刘志彬. 二氧化钛-表面活性剂处理甲基橙的性能研究[J]. 哈尔滨商业大学学报(自然科学版), 2015, 31(2):177-182. LIU Z B. Research of removal methyl orange by titanium diox-ide-surfactant[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2015, 31(2):177-182.
[13] 龙梅,丛野,李轩科,等. 部分还原氧化石墨烯/二氧化钛复合材料的水热合成及其光催化活性[J]. 物理化学学报, 2013, 29(6):1344-1350. LONG M, CONG Y, LI X K, et al. Hydrothermal synthesis and photocatalytic activity of partially reduced graphene oxide/TiO2 composite[J]. Acta Physico-Chimica Sinica, 2013, 29(6):1344-1350.
[14] LI K, GAO S M, WANG Q Y, et al. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation[J]. ACS Applied Materials & Interfaces, 2015, 7(17):9023-9030.
[15] SHEN H L, CUI C, YING B L, et al. One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocompo-sites with enhanced photocatalytic activity[J]. Journal of Alloys & Compounds, 2014, 582(1):236-240.
[16] SHEN J F, SHI M, YAN B, et al. Ionic liquid-assisted one-step hydrothermal synthesis of TiO2-reduced graphene oxide compo-sites[J]. Nano Research, 2011, 4(8):795-806.
[17] LAVRIC V, ISOPESCU R, MAURINO V, et al. A new model for nano-TiO2 crystals birth and growth in hydrothermal treat-ment using oriented attachment approach[J]. Crystal Growth & Design, 2017, 17(11):5640-5651.
[18] JIANG G O, LIN Z F, CHEN C, et al. TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants[J]. Carbon, 2011, 49(8):2693-2701.
[19] LIU J, BAI H, WANG Y, et al. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications[J]. Advanced Functional Materials, 2010, 20(23):4175-4181.
[20] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7):1558-1565.
[21] ZHANG Y, TANG Z R, FU X, et al. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation:what advantage does graphene have over its forebear carbon nanotube[J]. ACS Nano, 2011, 5(9):7426-7435.
[22] WU N Q, FU L, SU M, et al. Interaction of fatty acid mon-olayers with cobalt nanoparticles[J]. Nano Letters, 2015, 4(2):383-386.
[23] HE J J, WU D P, GAO Z Y, et al. Graphene sheets anchored with high density TiO2 nanocrystals and their application in quantum dot-sensitized solar cells[J]. RSC Advances, 2013, 4(4):2068-2072.
[1] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[2] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[3] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[4] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[5] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[6] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[9] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[10] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[11] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
[12] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[13] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[14] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[15] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn