Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (8): 132-140    DOI: 10.11868/j.issn.1001-4381.2018.001092
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
烧结颈分布对3D打印覆膜Al2O3零件强度的影响
赵枢明, 薛铠华, 杨通, 张雪, 姚山()
大连理工大学 材料科学与工程学院, 辽宁 大连 116024
Effect of sintered neck distribution on strength of 3D printing coated Al2O3 parts
Shu-ming ZHAO, Kai-hua XUE, Tong YANG, Xue ZHANG, Shan YAO()
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(7516 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

从烧结颈的尺寸及分布入手,研究覆膜Al2O3粉末的粒径分布对零件强度的影响。使用UV激光对覆膜粉末进行原位加热,在影像测量仪下测量并获得烧结颈束腰直径与颗粒直径之间的关系。建立颗粒堆积模型,将烧结颈分布与颗粒配位点对应,计算得出某一截面上被断开的烧结颈的投影面积比例。结果表明:对于2%(质量分数)树脂含量的覆膜Al2O3粉末,随着颗粒直径从75μm增长至375μm,烧结颈的束腰直径从40μm增长至100μm。而堆积模拟结果显示,随着颗粒直径从75~107μm区间增加至300~375μm区间,烧结颈的投影面积比例从0.2557降低至0.0823,与实验测量的覆膜Al2O3粉末的抗拉强度的趋势一致。将70/100,100/140目的颗粒按照质量比0:10,1:9,2:8,3:7,4:6,5:5,6:4,7:3,8:2,9:1,10:0混合后计算,发现投影面积比例从0.1772降低至0.1264,孔隙率从0.4511升高至0.4633。综合考虑抗拉强度及透气性,得出优化结果为两者比例为7:3时,投影面积比为0.1481,堆积孔隙率为0.4596。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵枢明
薛铠华
杨通
张雪
姚山
关键词 烧结颈颗粒堆积覆膜Al2O3粉末抗拉强度3D打印激光选区烧结    
Abstract

The influence of the particle size distribution on the strength of the coated Al2O3 parts was studied, through the size and distribution of the sintered neck. The powder was heated in situ by a UV laser, and the relationship between the sintered neck waist diameter and the particle diameter was obtained under an image measuring apparatus. A particle packing model was established, and the distribution of the sintered neck was corresponding to the particle coordination point, then the projected area ratio of the sintered neck that was broken in a certain section was calculated. As for the coated Al2O3 powder with the resin content of 2%(mass fraction), the results indicate that the sintered neck waist diameter increases from 40μm to 100μm as the particle diameter increases from 75μm to 375μm. The packing simulation results show that the projected area ratio decreases from 0.2557 to 0.0823, as the particle diameter increases from 75-107μm to 300-375μm, which is consistent with the experimentally measured tensile strength of the coated Al2O3 powder. The 70/100, 100/140 mesh powder are mixed to simulate based on the mass ratios of 0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, 10:0. The projected area ratio decreases from 0.1772 to 0.1264 and the porosity increases from 0.4511 to 0.4633. Considering the tensile strength and gas permeability, the optimization result is that the ratio is 7:3, the projected area ratio is 0.1481 and the porosity is 0.4596.

Key wordssintered neck    particle packing    coated Al2O3 powder    tensile strength    3D printing    select-ive laser sintering
收稿日期: 2018-09-17      出版日期: 2019-08-22
中图分类号:  TB332  
基金资助:国家高技术研究发展计划(863计划)(2015AA042502)
通讯作者: 姚山     E-mail: yaoshan@dlut.edu.cn
作者简介: 姚山(1966-), 男, 教授, 硕士, 从事砂型激光3D打印技术及应用研究, 联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学铸造中心311室(116024), E-mail:yaoshan@dlut.edu.cn
引用本文:   
赵枢明, 薛铠华, 杨通, 张雪, 姚山. 烧结颈分布对3D打印覆膜Al2O3零件强度的影响[J]. 材料工程, 2019, 47(8): 132-140.
Shu-ming ZHAO, Kai-hua XUE, Tong YANG, Xue ZHANG, Shan YAO. Effect of sintered neck distribution on strength of 3D printing coated Al2O3 parts. Journal of Materials Engineering, 2019, 47(8): 132-140.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001092      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/132
Fig.1  烧结颈束腰直径测量示意图
Fig.2  覆膜Al2O3颗粒
(a)加热前;(b)加热后
Fig.3  烧结颈模型及覆膜Al2O3的SEM断口形貌
(a)加热前颗粒接触状态;(b)加热后的烧结颈;(c)70~100目覆膜Al2O3的SEM断口形貌;(d)烧结颈在某一方向的受力
Fig.4  堆积模型中的烧结颈计算
(a)颗粒堆积及烧结颈状态;(b)Z向截面及断开的烧结颈
Fig.5  颗粒堆积及烧结颈分布模型的流程
Sieve size/mesh Particle diameter/μm
40/50 300-375
50/70 214-300
70/100 150-214
100/140 107-150
140/200 75-107
Table 1  实验筛分的粒度及模拟中使用的参数
Fig.6  烧结颈束腰直径与颗粒直径的关系
Fig.7  单颗粒堆积模拟结果
(a)X向容器尺寸;(b)Z向容器尺寸
Fig.8  直径为375μm的单组元颗粒的堆积结构及烧结颈分布
(a)颗粒堆积三维视图;(b)z=Zmax/2处颗粒查找;(c)烧结颈束腰圆集合;(d)束腰圆在XY面上的投影
Fig.9  不同粒径的投影面积比例与实测抗拉强度
Fig.10  不同粒径的烧结颈投影及对应的覆膜Al2O3 SEM断口形貌
(a)300~375μm;(b)214~300μm;(c)150~214μm;(d)107~150μm;(e)75~107μm
Fig.11  70/100,100/140目颗粒不同混合比例
Fig.11  优化比例后的堆积结构及烧结颈分布
(a)颗粒堆积三维视图;(b)z=Zmax/2处查找颗粒;(c)烧结颈束腰圆集合;(d)束腰圆在XY面上的投影
1 GUSTAFSON R , SPADA A T . Prototyping process produces sand molds, cores for production castings[J]. Journal of Applied Probability, 2002, 92 (2): 38- 39.
2 CHHABRA M , SINGH R . Rapid casting solutions:a review[J]. Rapid Prototyping Journal, 2011, 17 (5): 328- 350.
doi: 10.1108/13552541111156469
3 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44 (2): 122- 128.
3 ZHANG X J , TANG S Y , ZHAO H Y , et al. Research status and key technologies of 3D printing[J]. Journal of Materials Engineering, 2016, 44 (2): 122- 128.
4 PHAM D T , DIMOV S , LACAN F . Selective laser sintering:applications and technological capabilities[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 1999, 213 (5): 435- 449.
doi: 10.1243/0954405991516912
5 纪宏超, 张雪静, 裴未迟, 等. 陶瓷3D打印技术及材料研究进展[J]. 材料工程, 2018, 46 (7): 19- 28.
5 JI H C , ZHANG X J , PEI W C , et al. Research progress in ceramic 3D printing technology and material development[J]. Journal of Materials Engineering, 2018, 46 (7): 19- 28.
6 陈敬炎, 吴甲民, 陈安南, 等. 基于激光选区烧结的煤系高岭土多孔陶瓷的制备及其性能[J]. 材料工程, 2018, 46 (7): 36- 43.
6 CHEN J Y , WU J M , CHEN A N , et al. Preparation and prop-erties of porous coal-series kaolin ceramics by selective laser sint-ering[J]. Journal of Materials Engineering, 2018, 46 (7): 36- 43.
7 WEN S F , SHEN Q W , WEI Q S , et al. Material optimization and post-processing of sand molds manufactured by the selective laser sintering of binder-coated Al2O3 sands[J]. Journal of Materials Processing Technology, 2015, 225, 93- 102.
doi: 10.1016/j.jmatprotec.2015.05.028
8 XU Z F , LIANG P , YANG W , et al. Effects of laser energy density on forming accuracy and tensile strength of selective laser sintering resin coated sands[J]. China Foundry, 2014, 11 (3): 151- 156.
9 CASALINO G , FILIPPIS L A C D , LUDOVICO A . A technical note on the mechanical and physical characterization of selective laser sintered sand for rapid casting[J]. Journal of Materials Processing Technology, 2005, 166 (1): 1- 8.
10 VISSCHER W M , BOLSTERLI M . Random packing of equal and unequal spheres in two and three dimensions[J]. Nature, 1973, 239 (5374): 504- 507.
11 JODREY W S , TORY E M . Simulation of random packing of spheres[J]. Simulation Transactions of the Society for Modeling & Simulation International, 1979, 32 (1): 1- 12.
12 ZHOU J H , ZHANG Y W , CHEN J K . Numerical simulation of random packing of spherical particles for powder-based additive manufacturing[J]. Journal of Manufacturing Science & Engineering, 2009, 131 (3): 031004.
13 SHI Y , ZHANG Y W . Simulation of random packing of spherical particles with different size distributions[J]. Applied Physics A, 2008, 92 (3): 621- 626.
doi: 10.1007/s00339-008-4547-6
14 DOU X , MAO Y J , ZHANG Y W . Effects of contact force model and size distribution on microsized granular packing[J]. Journal of Manufacturing Science & Engineering, 2014, 136 (2): 021003.
15 ZHOU J H , ZHANG Y W , CHEN J K . Numerical simulation of laser irradiation to a randomly packed bimodal powder bed[J]. International Journal of Heat and Mass Transfer, 2009, 52 (13/14): 3137- 3146.
16 CHENG Y F , GUO S J , LAI H Y . Dynamic simulation of random packing of spherical particles[J]. Powder Technology, 2000, 107 (1/2): 123- 130.
17 JIA T , ZHANG Y , CHEN J K , et al. Dynamic simulation of granular packing of fine cohesive particles with different size distributions[J]. Powder Technology, 2012, 218 (1): 76- 85.
18 HITTI K , BERNACKI M . Optimized dropping and rolling (ODR) method for packing of poly-disperse spheres[J]. Applied Mathematical Modelling, 2013, 37 (8): 5715- 5722.
doi: 10.1016/j.apm.2012.11.018
19 BERTEI A , CHUEH C C , PHAROAH J G , et al. Modified collective rearrangement sphere-assembly algorithm for random packings of nonspherical particles:towards engineering applic-ations[J]. Powder Technology, 2014, 253, 311- 324.
doi: 10.1016/j.powtec.2013.11.034
20 PARTELI E J R , POSCHEL T . Particle-based simulation of powder application in additive manufacturing[J]. Powder Technology, 2016, 288, 96- 102.
doi: 10.1016/j.powtec.2015.10.035
21 TOPIC N , POSCHEL T . Steepest descent ballistic deposition of complex shaped particles[J]. Journal of Computational Physics, 2016, 308, 421- 437.
doi: 10.1016/j.jcp.2015.12.052
[1] 李文利, 周宏志, 刘卫卫, 于海宁, 王晶, 巩磊, 邢占文. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50.
[2] 吴晓芳, 陈凯, 张德坤. 可降解水凝胶作为关节软骨修复材料的研究进展[J]. 材料工程, 2022, 50(2): 12-22.
[3] 万李, 王海蟒, 蔡谞, 胡刻铭, 岳文, 张洪玉. 骨软骨组织工程仿生梯度支架研究进展[J]. 材料工程, 2022, 50(2): 38-49.
[4] 陈倩, 赵雪阳, 尤德强, 曾戎, 于振涛, 李卫, 王小健. 3D打印纯钛骨支架表面掺银介孔生物活性玻璃涂层的性能研究[J]. 材料工程, 2022, 50(11): 34-45.
[5] 吕彦龙, 贺建超, 侯金保, 张博贤. 热处理对TiAl/Ti2AlNb放电等离子扩散焊接头微观组织与力学性能的影响[J]. 材料工程, 2021, 49(9): 87-93.
[6] 刘宸希, 康红军, 吴金珠, 曹宁宁, 吴晓宏. 3D打印技术及其在医疗领域的应用[J]. 材料工程, 2021, 49(6): 66-76.
[7] 汤桂平, 严倩, 刘洁, 宋波, 文世峰, 史玉升. 3D打印琼脂糖和海藻酸钠复合水凝胶组织与性能研究[J]. 材料工程, 2021, 49(5): 66-74.
[8] 王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
[9] 范泽文, 赵新宇, 邱帅, 王艳, 郭静, 权慧欣, 徐兰娟. 聚乳酸/聚乙二醇/羟基磷灰石多孔骨支架的3D打印制备及其生物相容性[J]. 材料工程, 2021, 49(4): 135-141.
[10] 刘雨, 陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程, 2020, 48(9): 1-12.
[11] 曲丽丹, 韩斌慧, 吕云卓, 白钰枝. 激光3D打印非晶合金晶化体积分数的理论预测[J]. 材料工程, 2020, 48(7): 133-138.
[12] 郑镭, 孙维连, 孙铂, 张雪静, 纪宏超. 挤出方式对黏弹性浆料3D打印出料可控性的影响[J]. 材料工程, 2020, 48(3): 134-141.
[13] 马绪强, 苏正涛. 民用航空发动机树脂基复合材料应用进展[J]. 材料工程, 2020, 48(10): 48-59.
[14] 何代华, 朱威, 刘翔, 刘平. 硅酸钙及硅酸钠浓度对钛合金表面生物活性涂层的影响[J]. 材料工程, 2020, 48(10): 148-156.
[15] 刘帅, 郭广平, 郝文峰, 杨洋, 张悦, 陈子木. 基于数字体相关方法的3D打印材料内部变形测量[J]. 材料工程, 2020, 48(10): 176-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn