Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (8): 154-160    DOI: 10.11868/j.issn.1001-4381.2017.001550
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
新型高密度合金的组织与性能
刘冠旗1, 王春旭1,*(), 刘少尊1, 厉勇1, 谭成文2, 刘志超2
1 钢铁研究总院 特殊钢研究所, 北京 100081
2 北京理工大学 材料学院, 北京 100081
Microstructure and properties of a new high density alloy
Guan-qi LIU1, Chun-xu WANG1,*(), Shao-zun LIU1, Yong LI1, Cheng-wen TAN2, Zhi-chao LIU2
1 Institute for Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China
2 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
全文: PDF(3469 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于面心立方固溶体结构和时效强化机理,设计出一种新型高密度合金NiW750。利用SEM,TEM对合金微观组织进行观察,采用分离式Hopkinson压杆实验研究合金在动态压缩条件下的特点,并将此合金与其领域常用材料超高强度钢G50及钨合金93WNiFe进行对比。结果表明:NiW750合金在3种材料中综合性能最好。在750℃/5h时效后,合金抗拉强度可达1746MPa,冲击韧度(akU)可达113J/cm2。在动态加载条件下,材料存在应变率硬化效应,其动态流变应力可达到2250MPa左右。试样在与中心轴线成45°方向形成绝热剪切带,在应变率约5500s-1条件下,带宽80~150μm,过渡区较宽,避免材料剪切断裂过早出现。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘冠旗
王春旭
刘少尊
厉勇
谭成文
刘志超
关键词 高密度合金面心立方时效强化力学性能绝热剪切带    
Abstract

A new high density alloy NiW750 was developed, which was based on the faced-center cubic solid solution structure and aging strengthening mechanism. Microstructure of the alloy was observed by SEM and TEM. The material characteristics under dynamic compressing loading were investigated by using the split Hopkinson pressure bar test. The comparison among the NiW750, ultra high strength steel G50 and tungsten 93WNiFe was also conducted.The results show that the NiW750 high density alloy has the best comprehensive properties among three materials. After aging at 750℃/5h, the tensile strength of NiW750 can achieve up to 1746MPa, while the impact toughness (akU) can achieve 113J/cm2. Under the condition of dynamic loading, the material shows strain rate hardening effect obviously as its dynamic flow stress can reach about 2250MPa. The adiabatic shear bands are formed within specimens in the direction of 45° to the central axis with a bandwidth of 80-150μm at the strain rate of about 5500s-1 and a wide transition zone, so as to avoid the premature emergence of the shear fracture.

Key wordshigh density alloy    faced-center cubic    aging strengthening    mechanical property    adiabatic shear band
收稿日期: 2017-12-17      出版日期: 2019-08-22
中图分类号:  TG146.4  
基金资助:国家重点研发计划项目(2016YFB0300104)
通讯作者: 王春旭     E-mail: wangchunxu@nercast.com
作者简介: 王春旭(1971-), 男, 教授级高级工程师, 博士, 主要从事超高强度钢及合金方面的研究工作, 联系地址:北京市海淀区高梁桥斜街13号院钢铁研究总院南院新材料大楼729(100081), E-mail:wangchunxu@nercast.com
引用本文:   
刘冠旗, 王春旭, 刘少尊, 厉勇, 谭成文, 刘志超. 新型高密度合金的组织与性能[J]. 材料工程, 2019, 47(8): 154-160.
Guan-qi LIU, Chun-xu WANG, Shao-zun LIU, Yong LI, Cheng-wen TAN, Zhi-chao LIU. Microstructure and properties of a new high density alloy. Journal of Materials Engineering, 2019, 47(8): 154-160.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001550      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/154
Fig.1  分离式Hopkinson压杆装置示意图
Specimen Rm/MPa Rp0.2/MPa akU/(J·cm-2) Density/(g·cm-3)
NiW750 withoutaging 1435 1262 268 11.4
NiW750 aging at 750℃/5h 1746 1571 113 11.4
93WNiFe[14] 1286 1255 13 17.7
G50[8] 1810 1590 67 7.7
Table 1  NiW750合金与常用战斗部材料性能对比
Fig.2  NiW750合金的微观组织
(a)未时效;(b)750℃时效
Fig.3  NiW750合金中未溶物的形貌
Fig.4  未溶物能谱分析
Element Mass fraction/% Atom fraction/%
Ta 5.91 4.55
Co 2.14 5.06
Ni 12.84 30.46
W 79.11 59.93
Table 2  未溶物的化学成分
Fig.5  NiW750合金TEM形貌
(a)未时效;(b)750℃时效
Fig.6  不同材料的真应力-应变曲线
(a)NiW750未时效态;(b)NiW750在750℃时效态;(c)G50;(d)93WNiFe
Fig.7  不同材料流变应力与应变率之间的关系
Fig.8  未时效NiW750合金在5330s-1应变率下纵截面的微观组织
Fig.9  NiW750合金在高应变率下的横截面微观组织
(a)未时效,应变率为5330s-1;(b)750℃时效,应变率为5760s-1
1 才鸿年, 王鲁, 李树奎. 战斗部材料研究进展[J]. 中国工程科学, 2002, 4 (12): 21- 27.
doi: 10.3969/j.issn.1009-1742.2002.12.004
1 CAI H N , WANG L , LI S K . Research progress in warhead materials[J]. Engineering Science, 2002, 4 (12): 21- 27.
doi: 10.3969/j.issn.1009-1742.2002.12.004
2 袁书强, 张保玉, 陈子明, 等. 战斗部用钨合金材料现状及发展状况[J]. 中国钨业, 2015, 30 (2): 49- 52.
2 YUAN S Q , ZHANG B Y , CHEN Z M , et al. Current status and development of tungsten alloys using in warheads[J]. China Tungsten Industry, 2015, 30 (2): 49- 52.
3 葛鹏, 赵永庆, 周廉. 从导弹战斗部用钛合金的研究看材料的开发[J]. 材料导报, 2003, 17 (12): 26- 28.
doi: 10.3321/j.issn:1005-023X.2003.12.008
3 GE P , ZHAO Y Q , ZHOU L . Material development as viewed from study of titanium alloys used in missile warhead[J]. Materials Review, 2003, 17 (12): 26- 28.
doi: 10.3321/j.issn:1005-023X.2003.12.008
4 薛智, 张治民, 于建民, 等. 30CrMnSiNi2A钢的动态屈服强度研究[J]. 兵器材料科学与工程, 2009, 32 (1): 10- 13.
doi: 10.3969/j.issn.1004-244X.2009.01.003
4 XUE Z , ZHANG Z M , YU J M , et al. Research on dynamic yield strength of steel 30CrMnSiNi2A[J]. Ordnance Material Science and Engineering, 2009, 32 (1): 10- 13.
doi: 10.3969/j.issn.1004-244X.2009.01.003
5 刘盼萍, 尹燕, 常列珍, 等. 正火态50SiMnVB钢Johnson-Cook本构方程的建立[J]. 兵器材料科学与工程, 2009, 32 (1): 45- 49.
doi: 10.3969/j.issn.1004-244X.2009.01.013
5 LIU P P , YIN Y , CHANG L Z , et al. Establishing of Johnson-Cook constitutive equation for normalized steel 50SiMnVB[J]. Ordnance Material Science and Engineering, 2009, 32 (1): 45- 49.
doi: 10.3969/j.issn.1004-244X.2009.01.013
6 ODESHI A G , BASSIM M N , AL-AMEERI S . Effect of heat treatment on adiabatic shear bands in a high-strength low alloy steel[J]. Materials Science and Engineering:A, 2006, 419 (1/2): 69- 75.
7 ODESHI A G , BASSIM M N , AL-AMEERI S , et al. Dynamic shear band propagation and failure in AISI 4340 steel[J]. Journal of Materials Processing Technology, 2005, 169 (2): 150- 155.
doi: 10.1016/j.jmatprotec.2005.03.016
8 王可慧, 张颖, 段建, 等. G50钢的力学性能实验研究[J]. 兵工学报, 2009, 30 (增刊2): 247- 250.
8 WANG K H , ZHANG Y , DUAN J , et al. Experimental research on the mechanical properties of G50 alloy steel[J]. Acta Armamentarii, 2009, 30 (Suppl 2): 247- 250.
9 张胜男, 程兴旺. Aermet100超高强度钢的动态力学性能研究[J]. 材料工程, 2015, 43 (12): 24- 30.
doi: 10.11868/j.issn.1001-4381.2015.12.005
9 ZHANG S N , CHENG X W . Dynamic mechanical properties of Aermet100 ultra-high strength steel[J]. Journal of Materials Engineering, 2015, 43 (12): 24- 30.
doi: 10.11868/j.issn.1001-4381.2015.12.005
10 LIU J X , LI S K , ZHOU X Q , et al. Adiabatic shear banding in a tungsten heavy alloy processed by hot-hydrostatic extrusion and hot torsion[J]. Scripta Materialia, 2008, 59 (12): 1271- 1274.
doi: 10.1016/j.scriptamat.2008.08.036
11 LI Y Y , HU K , LI X Q , et al. Fine-grained 93W-5.6Ni-1.4Fe heavy alloys with enhanced performance prepared by spark plasma sintering[J]. Materials Science and Engineering:A, 2013, 573, 245- 252.
doi: 10.1016/j.msea.2013.02.069
12 HU K , LI X Q , GUAN M , et al. Dynamic deformation beha-vior of 93W-5.6Ni-1.4Fe heavy alloy prepared by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2016, 58, 117- 124.
doi: 10.1016/j.ijrmhm.2016.04.010
13 刘晓俊, 任会兰, 宁建国. 不同配比W/Zr活性材料冲击反应实验研究[J]. 材料工程, 2017, 45 (4): 77- 83.
13 LIU X J , REN H L , NING J G . Experimental study on impact response of W/Zr reactive materials with different proportions[J]. Journal of Materials Engineering, 2017, 45 (4): 77- 83.
14 RAVI KIRAN U , PANCHAL A , SANKARANARAYANA M , et al. Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys[J]. Materials Science and Engineering:A, 2015, 640, 82- 90.
doi: 10.1016/j.msea.2015.05.046
15 GONG X , FAN J L , DING F , et al. Effect of tungsten content on microstructure and quasi-static tensile fracture characteristics of rapidly hot-extruded W-Ni-Fe alloys[J]. International Journal of Refractory Metals and Hard Materials, 2012, 30 (1): 71- 77.
doi: 10.1016/j.ijrmhm.2011.06.014
16 PERZYNA P . Fundamental problems in viscoplasticity[J]. Advances in Applied Mechanics, 1966, 9 (2): 244- 368.
17 SUNWOO A J , BECKE R , GOTO D M , et al. Adiabatic shear band formation in explosively driven Fe-Ni-Co alloy cylinders[J]. Scripta Materialia, 2006, 55 (3): 247- 250.
doi: 10.1016/j.scriptamat.2006.04.010
18 田杰, 胡时胜. G50钢动态力学性能的实验研究[J]. 工程力学, 2006, 23 (6): 107- 109.
doi: 10.3969/j.issn.1000-4750.2006.06.019
18 TIAN J , HU S S . Research of dynamic mechanical behaviors of G50 steel[J]. Engineering Mechanics, 2006, 23 (6): 107- 109.
doi: 10.3969/j.issn.1000-4750.2006.06.019
19 KIM D S , NEMAT-NASSER S , ISAACS J B , et al. Adiabatic shear band in WHA in high-strain-rate compression[J]. Mechanic of Materials, 1998, 28 (1): 227- 236.
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn