Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 76-81    DOI: 10.11868/j.issn.1001-4381.2017.001426
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
挤压温度对Mg-5.3Gd-2.6Y-1.1Nd-0.3Zr合金的力学性能和耐生物腐蚀性能的影响
谢鑫1, 唐建国1,2, 石洪吉1, 官立群1, 杨柳1, 邓运来1, 唐昌平3, 张议丹1
1. 中南大学 材料科学与工程学院, 长沙 410083;
2. 中南大学 有色金属材料科学与工程教育部重点实验室, 长沙 410083;
3. 湖南科技大学 材料科学与工程学院, 湖南 湘潭 411201
Effect of extrusion temperature on mechanical properties and biological corrosion resistance of Mg-5.3Gd-2.6Y-1.1Nd-0.3Zr alloy
XIE Xin1, TANG Jian-guo1,2, SHI Hong-ji1, GUAN Li-qun1, YANG Liu1, DENG Yun-lai1, TANG Chang-ping3, ZHANG Yi-dan1
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering(Ministry of Education), Central South University, Changsha 410083, China;
3. School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
全文: PDF(4425 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在不同温度下对均匀化处理后的Mg-5.3Gd-2.6Y-1.1Nd-0.3Zr(质量分数/%)镁合金进行挤压。利用光学显微镜和拉伸实验对比研究固溶态铸锭、不同挤压温度合金的显微组织和力学性能,采用析氢法、失重法和极化曲线实验综合测试合金在Hank's人体模拟液中的耐生物腐蚀性能,利用扫描电子显微镜观察腐蚀后合金的表面腐蚀形貌。结果表明:随着挤压温度的降低,合金的晶粒不断细化,强度及塑性不断提高,其中390℃温度下挤压得到的合金屈服强度达到223.4MPa,较固溶态铸锭(139.8MPa)提升约60%,且挤压后的合金在Hank's体液中具有更高的耐腐蚀性,随着挤压温度的降低,合金的耐蚀性先升高后降低,450℃挤压的棒材耐生物腐蚀性能最优,腐蚀速率为0.74mm/a。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢鑫
唐建国
石洪吉
官立群
杨柳
邓运来
唐昌平
张议丹
关键词 挤压温度力学性能耐生物腐蚀性能    
Abstract:The homogenized Mg-5.3Gd-2.6Y-1.1Nd-0.3Zr(mass fraction/%) ingots were extruded at different temperatures.The microstructures and mechanical properties of the solution-treated ingot and those extruded at different temperatures were investigated by optical microscopy(OM) and tensile test. The corrosion resistance of the alloys in Hank's solutions was evaluated by mass loss, hydrogen evolution and Tafel polarization tests. The surface corrosion morphology of the specimens after immersion was examined by scanning electron microscopy. The results show that the grains of the investigated alloy are refined substantially after extrusion, and their strength and ductility increase along with the decrease of the extrusion temperature, and the yield strength of the extruded alloy under 450℃ reaches 223.4MPa, which is about 60% higher than that of T4 alloy (139.8MPa). The extrusion deformation also has positive effects on the alloys' corrosion resistance, and corrosion resistance of the alloy increases first and then decreases along with the decrease of the extrusion temperature. The one extruded under 450℃ seems to show the best corrosion resistance,whose corrosion rate is 0.74mm/a.
Key wordsextrusion temperature    mechanical property    biological corrosion resistance
收稿日期: 2017-11-28      出版日期: 2019-10-12
中图分类号:  TG146.2  
通讯作者: 唐建国(1976-),男,副教授,博士,主要从事轻合金织构与微结构研究,联系地址:湖南省长沙市岳麓区中南大学主校区材料科学与工程学院(410083),E-mail:jgtang@csu.edu.cn     E-mail: jgtang@csu.edu.cn
引用本文:   
谢鑫, 唐建国, 石洪吉, 官立群, 杨柳, 邓运来, 唐昌平, 张议丹. 挤压温度对Mg-5.3Gd-2.6Y-1.1Nd-0.3Zr合金的力学性能和耐生物腐蚀性能的影响[J]. 材料工程, 2019, 47(10): 76-81.
XIE Xin, TANG Jian-guo, SHI Hong-ji, GUAN Li-qun, YANG Liu, DENG Yun-lai, TANG Chang-ping, ZHANG Yi-dan. Effect of extrusion temperature on mechanical properties and biological corrosion resistance of Mg-5.3Gd-2.6Y-1.1Nd-0.3Zr alloy. Journal of Materials Engineering, 2019, 47(10): 76-81.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001426      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/76
[1] ZHANG X, WU Y, XUE Y, et al. Biocorrosion behavior and cytotoxicity of a Mg-Gd-Zn-Zr alloy with long period stacking ordered structure[J]. Materials Letters, 2012, 86(11):42-45.
[2] 袁广银, 章晓波, 牛佳林,等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011, 21(10):2476-2488. YUAN G Y, ZHANG X B, NIU J L, et al. Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10):2476-2488.
[3] 宗阳. 可降解骨内植入材料用镁合金JDBM表面改性的研究[D].上海:上海交通大学, 2011:45-57. ZONG Y. Investigation of surface modification on degradable magnesium alloy JDBM used as bone implants[D]. Shanghai:Shanghai Jiao Tong University, 2011:45-57.
[4] ZENG R, DIETZEL W, WITTE F, et al. Progress and challenge for magnesium alloys as biomaterials[J]. Advanced Engineering Materials, 2008, 10(8):3-14.
[5] LI H, ZHENG Y, QIN L. Progress of biodegradable metals[J]. Progress in Natural Science:Materials International, 2014, 24(5):414-422.
[6] DING W. Opportunities and challenges for the biodegradable magnesium alloys as next-generation biomaterials[J]. Regenerative Biomaterials, 2016, 3(2):79-86.
[7] HOMBERGER H, VIRTATEN S, BOCCACCINI A R. Biomedical coatings on magnesium alloys-a review[J]. Acta Biomaterialia, 2012, 8(7):2442-2455.
[8] JO J H, HONG J Y, SHIN K S, et al. Enhancing biocompatibility and corrosion resistance of Mg implants via surface treatments[J]. Journal of Biomaterials Applications, 2012, 27(4):469-476.
[9] 周梦林,饶少凯,周均,等. 微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性[J]. 材料工程, 2018, 46(9):80-87. ZHOU M L, RAO S K, ZHOU J, et al. Fretting wear properties of micro-arc oxidation treated magnesium alloy under condition of simulated bone plate-screw service[J]. Journal of Materials Engineering, 2018, 46(9):80-87.
[10] HIROMATO S, YAMAMOTO A. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution[J].Electrochimica Acta,2009,54(27):7085-7093.
[11] HOU L, LI Z, PAN Y, et al. Microstructure, mechanical properties, corrosion behavior and hemolysis of as-extruded biodegradable Mg-Sn-Zn alloy[J]. AIP Conterence Proccedings,2016, 1727(1):3557-3563.
[12] HAMU G B, ELIEZER D, WAGNER L. The relation between severe plastic deformation microstructure and corrosion behavior of AZ31 magnesium alloy[J]. Journal of Alloys & Compounds, 2009, 468(1):222-229.
[13] SONG D, MA A B, JIANG J H, et al. Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing[J]. Corrosion Science, 2011, 53(1):362-373.
[14] ZHANG X, WANG Q, BA Z, et al. Improved corrosion resistance of as-extruded GZ51K biomagnesium alloy with high mechanical properties by aging treatment[J]. Journal of Materials Engineering and Performance, 2016, 25(3):719-725.
[15] 邓运来, 杨柳, 郭天才,等. Mg-Gd-Y-Zr合金在773和823K热处理时的氧化行为[J]. 中南大学学报(自然科学版), 2010, 41(2):483-488. DENG Y L, YANG L, GUO T C, et al. Oxidization of Mg-Gd-Y-Zr alloy during heat treatment process at 773 and 823K[J]. Journal of Central South University (Science and Technology), 2010, 41(2):483-488.
[16] 石洪吉,邓运来,张凯,等. Nd含量对Mg-6Gd-2.5Y-0.5Zr合金显微组织和力学性能的影响[J].中国有色金属学报, 2017, 27(9):1785-1793. SHI H J, DENG Y L, ZHANG K, et al. Effects of Nd addition on microstructure and mechanical properties of Mg-6Gd-2.5Y-0.5Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(9):1785-1793.
[17] ZENG R, KAINER K U, BLAWERT C, et al. Corrosion of an extruded magnesium alloy ZK60 component-the role of microstructural features[J]. Journal of Alloys & Compounds, 2011, 509(13):4462-4469.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn