Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (10): 113-119    DOI: 10.11868/j.issn.1001-4381.2018.000042
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征
梁家浩1,2, 魏智强1,2, 朱学良2, 张旭东2, 武晓娟1, 姜金龙2
1. 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050;
2. 兰州理工大学 理学院, 兰州 730050
Property characterization of spinel structure Ni-doped ZnFe2O4 nanoparticles
LIANG Jia-hao1,2, WEI Zhi-qiang1,2, ZHU Xue-liang2, ZHANG Xu-dong2, WU Xiao-juan1, JIANG Jin-long2
1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;
2. School of Science, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(2483 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用水热法成功合成了纯ZnFe2O4和不同含量Ni掺杂Zn1-xNixFe2O4纳米颗粒。采用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)、X射线能量色散分析(XEDS)、紫外可见吸收光谱(UV-Vis)、傅里叶变换红外光谱(FT-IR)和振动样品磁强计(VSM)等测试技术研究掺杂浓度对Zn1-xNixFe2O4x=0,0.1,0.3,0.5)样品的晶体结构、形貌、光学性能和磁学性能的影响。结果表明:所制备的Zn1-xNixFe2O4纳米颗粒结晶良好,Ni2+以替代Zn2+的形式掺杂到ZnFe2O4晶格中,生成立方尖晶石结构ZnFe2O4。随着Ni含量的增加,晶粒尺寸增大,晶格常数发生收缩。样品的形貌呈不规则的椭球形,且颗粒大小比较均匀。红外光谱的吸收峰位置并没有随Ni掺杂浓度的增加而变化。Zn1-xNixFe2O4纳米晶的光学带隙随Ni掺杂浓度增加而增大,与相应块体相比发生蓝移。在室温下,纯ZnFe2O4纳米晶呈现超顺磁性,掺杂样品具有明显的铁磁性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁家浩
魏智强
朱学良
张旭东
武晓娟
姜金龙
关键词 掺杂ZnFe2O4晶体结构光学性能磁性能    
Abstract:Pure and Ni-doped Zn1-xNixFe2O4 nanoparticles with different contents were successfully prepared via hydrothermal method. The influence of nickel doping concentration on the microstructure, morphology, optical and magnetic properties of Zn1-xNixFe2O4(x=0,0.1,0.3,0.5) nanocrystals were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction(SAED), X-ray energy dispersive spectroscopy(XEDS),ultraviolet-visible absorption spectrum(UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and the vibrating sample magnetometer (VSM) and etc. The results show that all Zn1-xNixFe2O4 nanoparticles are with good crystallization,Ni2+ enters into ZnFe2O4 lattice in the form of replacing Zn2+,and generating cubic spinel structure ZnFe2O4. With the increase of Ni content, the crystalline size increases and the lattice constant shrinks. The morphology of the samples exhibits irregular ellipsoid with uniform particle size. The absorption peak position of FT-IR spectra does not change with the increase of Ni doping concentration. The energy band gap of Zn1-xNixFe2O4 nanocrystals increases with the increase of Ni doping concentration, and blue shift occurs compared with the corresponding bulk. Pure ZnFe2O4 nanocrystals exhibit super paramagnetic properties and the doped samples show obvious ferromagnetism at room temperature.
Key wordsdoping    ZnFe2O4    crystal microstructure    optical property    magnetic property
收稿日期: 2018-01-11      出版日期: 2019-10-12
中图分类号:  TN304.22  
通讯作者: 魏智强(1973-),男,博士,教授,主要研究方向为纳米功能材料,联系地址:甘肃省兰州市七里河区兰工坪路287号兰州理工大学理学院(730050),E-mail:zqwei7411@163.com     E-mail: zqwei7411@163.com
引用本文:   
梁家浩, 魏智强, 朱学良, 张旭东, 武晓娟, 姜金龙. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10): 113-119.
LIANG Jia-hao, WEI Zhi-qiang, ZHU Xue-liang, ZHANG Xu-dong, WU Xiao-juan, JIANG Jin-long. Property characterization of spinel structure Ni-doped ZnFe2O4 nanoparticles. Journal of Materials Engineering, 2019, 47(10): 113-119.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000042      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/113
[1] TANG X Q,HOU X H,YAO L M,et al. Mn-doped ZnFe2O4, nanoparticles with enhanced performances as anode materials for lithium ion batteries[J]. Materials Research Bulletin,2014,57:127-134.
[2] HOU G Q, ZHANG Y J, GAO S J. Enhanced visible-light phot-ocatalytic activities of flower-like ZnFe2O4 decorated with Ag3PO4 nanoparticles[J]. Materials Letters,2017,209:598-601.
[3] JING L,XU Y,QIN C,et al. Visible-light-driven ZnFe2O4/Ag/Ag3VO4 photocatalysts with enhanced photocatalytic activity under visible light irradiation[J]. Materials Research Bulletin,2017,95:607.
[4] CUI C X, XU L J, XIE T P, et al. Synthesis and photocatalytic activity of magnetic heterostructure ZnFe2O4-SrFe12O19[J]. Materials Technology,2016,31(8):454-462.
[5] TONG G X,DU F F,WU W H, et al. Enhanced reactive oxygen species (ROS) yields and antibacterial activity of spongy ZnO/ZnFe2O4 hybrid micro-hexahedra selectively synthesized through a versatile glucose-engineered co-precipitation/annealing process[J]. Journal of Materials Chemistry B,2013(20):2647-2657.
[6] GUO P, CUI L, WANG Y, et al. Facile synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties[J]. Langmuir,2013,29(28):8997-9003.
[7] THANKACHAN R M, RAHMAN M M, SULTANA I, et al. Enhanced lithium storage in ZnFe2O4-C nanocomposite produced by a low-energy ball milling[J]. Journal of Power Sources,2015,282:462-470.
[8] WANG H G, GAO J M, LIU W, et al. Recovery of metal-doped zinc ferrite from zinc-containing electric arc furnace dust:process development and examination of elemental migration[J]. Hydro-metallurgy,2016,166:1-8.
[9] KHAZAEI A, RANJBARAN A, ABBASI F, et al. Synthesis, characterization and application of ZnFe2O4 nanoparticles as a heterogeneous ditopic catalyst for the synthesis of pyrano[2,3-d] pyrimidines[J]. RSC Advances,2015,5(18):13643-13647.
[10] ZHANG L, GUAN H, DONG Q, et al. Synthesis and charac-terization of Ni0.7Zn0.3Fe2O4 and Mn0.7Zn0.3Fe2O4 nanoparti-cles by water-in-oil microemulsion[J]. Integrated Ferroelec-trics,2014,154(1):103-109.
[11] BAYKAL A, ESIR S, DEMIR A, et al. Magnetic and optical properties of Cu1-xZnxFe2O4 nanoparticles dispersed in a silica matrix by a sol-gel auto-combustion method[J]. Ceramics Inter-national,2015,41(1):231.
[12] CHEN Z H,SUN Y P,KANG Z T,et al. Preparation of ZnxCo1-xFe2O4 nanoparticles by microwave-assisted ball milling[J]. Ceramics International,2014,40(9):14687-14692.
[13] WANG Y L,ZHANG L X. Synthesis and electrochemical performance of hollow ZnFe2O4 microspheres[J]. Chinese Journal of Process Engineering,2015,15(1):169-173.
[14] ERFANINIA N, TAYEBEE R, FOLETTO E L, et al. Prepa-ration of magnetically recyclable ZnFe2O4 nanoparticles by easy single-step co-precipitation method and their catalytic perfor-mance in the synthesis of 2-aminothiophenes[J]. Applied Orga-nometallic Chemistry,2018,32(2):4047.
[15] WU Y L, WANG Q H, WANG L, et al. Preparation of ZnFe2O4 nanometer powders by sol-gel method and research about its electrochemical performance[J]. Advanced Materials Research,2013,743:179-182.
[16] GAO D. Synthesis and characterization of NiZnFeO and MnZnFeO nanoparticles by water-in-oil microemulsion[J]. Integrated Ferroelectrics an International Journal,2014,154(1):103-109.
[17] YANG L I, LAI X, QIN D, et al. Preparation of spinel CoxZn1-x-Fe2O4 nanocrystallines by sodium hydroxide co-precipitation met-hod[J]. Journal of Sichuan Normal University,2013,36(4):610-613.
[18] SUTKA A, ZAVICKIS J, MEZINSKIS G, et al. Ethanol moni-toring by ZnFe2O4 thin film obtained by spray pyrolysis[J]. Sensors & Actuators B Chemical,2013,176(6):330-334.
[19] WANG C, TAN X, YAN J, et al. Electrospinning direct synth-esis of magnetic ZnFe2O4/ZnO multi-porous nanotubes with enhanced photocatalytic activity[J]. Applied Surface Science, 2017,396:780-790.
[20] DHIMAN M, SHARMA R, KUMAR V, et al. Morphology controlled hydrothermal synthesis and photocatalytic properties of ZnFe2O4 nanostructures[J]. Ceramics International, 2016,42(11):12594-12605.
[21] SHETTY K, RENUKA L, NAGASWARUPA H P, et al. A comparative study on CuFe2O4, ZnFe2O4 and NiFe2O4:morph-ology, impedance and photocatalytic studies[J]. Materials Today Proceedings,2017,4(11):11806-11815.
[1] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[2] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[3] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[4] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[5] 李忠裕, 李云同, 吴雯倩, 刘玲, 彭超华, 袁丛辉, 戴李宗. 磷掺杂中空碳球的制备及其电容性能[J]. 材料工程, 2020, 48(3): 105-111.
[6] 余萍, 刘施羽, 王敏, 付蕊. 改进溶液燃烧法制备Fe3+掺杂Bi24O31Cl10及其光催化性能的研究[J]. 材料工程, 2020, 48(2): 38-45.
[7] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[8] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[9] 吴胜财, 罗弦, 龙永富, 张露, 徐本军, 黄润. 二氧化硅掺杂对二氧化钛晶型转变机理的影响[J]. 材料工程, 2020, 48(11): 99-107.
[10] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[11] 涂蕴超, 何承绪, 孟利, 陈冷. 退火工艺参数及母材性能对取向硅钢超薄带磁性能的影响[J]. 材料工程, 2020, 48(1): 61-69.
[12] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[13] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
[14] 杜宏艳, 戚宇帆, 吴晨雪, 刘玥君, 梁丽萍, 郭文英, 张子栋. SiO2光子晶体结构色薄膜的制备与光学性能研究[J]. 材料工程, 2019, 47(12): 111-117.
[15] 邢星河, 曹峰, 彭志航, 曾祥雄. Co掺杂对CaBi2Nb2O9陶瓷结构和电学性能的影响[J]. 材料工程, 2018, 46(8): 36-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn