Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (11): 84-91    DOI: 10.11868/j.issn.1001-4381.2019.000016
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
考虑层间和界面的玻璃纤维/环氧复合材料吸湿扩散实验和仿真
朱礼宝1, 戴文喜2, 李永清1,*(), 朱锡1, 朱子旭1
1 海军工程大学 舰船与海洋学院, 武汉 430033
2 中国舰船研究设计中心, 武汉 430064
Experimental/numerical investigation of moisture diffusion in glass/epoxy composites in consideration of interlamination and interphase
Li-bao ZHU1, Wen-xi DAI2, Yong-qing LI1,*(), Xi ZHU1, Zi-xu ZHU1
1 College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China
2 China Ship Development and Design Center, Wuhan 430064, China
全文: PDF(2980 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

为研究复合材料层间和界面对吸湿扩散系数的影响,开展单向玻璃纤维/环氧复合材料和纯环氧树脂的吸湿实验,获取复合材料的三维扩散系数。采用光学显微镜和原子力显微镜分别获取复合材料层间和界面的参数。依据实验结果,建立包含层间和界面的复合材料瞬态扩散与稳态扩散有限元模型。结果表明:复合材料沿纤维方向的扩散系数大于纯树脂的扩散系数,垂直于纤维的两个方向的扩散系数不相等。包含层间的有限元模型能更真实地反映复合材料的结构及其吸湿过程,层间对垂直于纤维方向的扩散起促进作用。纬纱对沿其方向扩散的促进作用明显。为拟合复合材料的三维扩散系数,需要考虑界面扩散性能的正交各向异性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱礼宝
戴文喜
李永清
朱锡
朱子旭
关键词 复合材料吸湿行为层间纤维/基体界面    
Abstract

In order to investigate the influence of the composite interlamination and interphase on the moisture absorption diffusivity, moisture absorption experiments were conducted on both unidirectional glass/epoxy composite and pure epoxy resin and the composite three dimensional diffusivities were obtained. The composite interlamination and interphase were observed by optical microscope and atomic force microscope, separately. Based on the experimental results, the composite transient diffusion finite element (FE) models and steady diffusion FE models were established, taking account of interlamination and interphase. Results show that the composite diffusivity along the fiber direction is larger than that in the direction transverse to the fiber. Diffusivities of the two directions transverse to the fiber were different. FE models with interlamination can more realistically reflect the composite structure and its moisture absorption process. Interlamination promotes diffusion in the direction transverse to fiber and warp affects the diffusivity apparently. The orthotropic interphase properties need to be considered to fit the three dimensional composite diffusivities.

Key wordscomposites    moisture absorption behavior    interlamination    fiber/matrix interphase
收稿日期: 2019-01-06      出版日期: 2019-11-21
中图分类号:  TB332  
基金资助:省部级基金(3020301020205)
通讯作者: 李永清     E-mail: liyongqing@126.com
作者简介: 李永清(1976-), 男, 副教授, 博士, 主要从事船用复合材料研究, 联系地址:湖北省武汉市硚口区解放大道717号海军工程大学舰船与海洋学院(430033), E-mail:liyongqing@126.com
引用本文:   
朱礼宝, 戴文喜, 李永清, 朱锡, 朱子旭. 考虑层间和界面的玻璃纤维/环氧复合材料吸湿扩散实验和仿真[J]. 材料工程, 2019, 47(11): 84-91.
Li-bao ZHU, Wen-xi DAI, Yong-qing LI, Xi ZHU, Zi-xu ZHU. Experimental/numerical investigation of moisture diffusion in glass/epoxy composites in consideration of interlamination and interphase. Journal of Materials Engineering, 2019, 47(11): 84-91.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000016      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/84
Fig.1  复合材料试样示意图
Fig.2  复合材料光学显微镜图
(a)纤维区;(b)层间
Fig.3  AFM测试结果
(a) AFM模量图; (b)典型模量分布
Fig.4  复合材料和树脂吸湿实验结果和拟合曲线
(a)F方向; (b)S方向; (c)T方向; (d)纯树脂
Method Neat resin Composites
Dresin DF DS DT
1D equation 4.32×10-3 6.16×10-3 4.45×10-3 2.98×10-3
3D equation 3.50×10-3 5.41×10-3 3.58×10-3 2.23×10-3
Table 1  复合材料和树脂的一维和三维扩散系数(mm2·h-1)
Fig.5  2D有限元模型
(a)纯树脂模型;(b)T方向Full模型;(c)T方向Interlamination模型;(d)S方向模型
Fig.6  2D有限元结果和实验结果
(a)纯树脂;(b)T方向;(c)S方向
Fig.7  3D有限元模型示意图
Model Type Di/Dm DS/(mm2·h-1) DT/(mm2·h-1) DF/(mm2·h-1)
Resin Experiment - 3.50×10-3 3.50×10-3 3.50×10-3
FEM - 3.50×10-3 3.50×10-3 3.50×10-3
Composite fiber area Non interphase 1 1.68×10-3 1.67×10-3 3.50×10-3
Isotropic interphase 2.1 1.98×10-3 1.97×10-3 3.79×10-3
Composite layer Experiment - 3.58×10-3 2.23×10-3 5.41×10-3
Non interphase 1 2.53×10-3 1.89×10-3 3.50×10-3
Isotropic interphase 2.1 2.79×10-3 2.23×10-3 3.79×10-3
Orthotropic interphase+warp x: 2.1; y: 2.1; z: 8.5 3.58×10-3 2.23×10-3 5.41×10-3
Table 2  3D有限元模型结果
1 BOND D A . Moisture diffusion in a fiber-reinforced composite part Ⅰ non-Fickian transport and the effect of fiber spatial distribution[J]. Journal of Composite Materials, 2005, 39 (23): 2113- 2141.
doi: 10.1177/0021998305052030
2 CHILALI A , ASSARAR M , ZOUARI W , et al. Effect of geometric dimensions and fibre orientation on 3D moisture diffusion in flax fibre reinforced thermoplastic and thermosetting composites[J]. Composites:Part A, 2017, 95, 75- 86.
doi: 10.1016/j.compositesa.2016.12.020
3 JIANG X , KOLSTEIN H , BIJLAARD F , et al. Effects of hygrothermal aging on glass-fibre reinforced polymer laminates and adhesive of FRP composite bridge:Moisture diffusion characteristics[J]. Composites:Part A, 2014, 57 (1): 49- 58.
4 ROCHA I B , RAIJMAEKERS S , Van Der MEER F P , et al. Combined experimental/numerical investigation of directional moisture diffusion in glass/epoxy composites[J]. Composites Science and Technology, 2017, 151, 16- 24.
doi: 10.1016/j.compscitech.2017.08.002
5 CANAL L P , MICHAUD V . Micro-scale modeling of water diffusion in adhesive composite joints[J]. Composite Structures, 2014, 111, 340- 348.
doi: 10.1016/j.compstruct.2014.01.009
6 谭翔飞, 谭鹏达, 何宇廷, 等. 航空碳纤维增强树脂基复合材料加筋壁板吸湿行为[J]. 材料工程, 2018, 46 (12): 61- 69.
doi: 10.11868/j.issn.1001-4381.2017.000728
6 TAN X F , TAN P D , HE Y T , et al. Moisture behavior of aeronautic carbon fiber reinforced resin composite stiffened panel[J]. Journal of Materials Engineering, 2018, 46 (12): 61- 69.
doi: 10.11868/j.issn.1001-4381.2017.000728
7 SHEN C H , SPRINGER G S . Moisture absorption and desorption of composite materials[J]. Journal of Composite Materials, 1976, 10 (1): 2- 20.
doi: 10.1177/002199837601000101
8 HALPIN J C . Primer on composite materials analysis[M]. 2 Ed Florida: CRC Press, 1992: 162.
9 GUERIBIZ D , RAHMANI M , JACQUEMIN F , et al. Homogenization of moisture diffusing behavior of composite materials with impermeable or permeable fibers-application to porous composite materials[J]. Journal of Composite Materials, 2009, 43 (12): 1391- 1408.
doi: 10.1177/0021998308104229
10 周灿, 周储伟, 何乾强. 考虑纤维/基体界面相的复合材料湿扩散模型[J]. 复合材料学报, 2014, 31 (4): 1091- 1097.
10 ZHOU C , ZHOU C W , HE Q Q . Moisture diffusion model of composites considering fiber/matrix inter-phase[J]. Acta Materiae Compositae Sinica, 2014, 31 (4): 1091- 1097.
11 WHITCOMB J , TANG X . Micromechanics of moisture diffusion in composites with impermeable fibers[J]. Journal of Composite Materials, 2002, 36 (9): 1093- 1101.
12 杨建江, 杨庆生. 纤维聚合物复合材料的有效湿扩散系数[J]. 复合材料学报, 2010, 27 (4): 147- 151.
12 YANG J J , YANG Q S . Effective moisture diffusion coefficient of fiber polymer-matrix composite[J]. Acta Materiae Compositae Sinica, 2010, 27 (4): 147- 151.
13 VADDADI P , NAKAMURA T , SINGH R P , et al. Inverse analysis for transient moisture diffusion through fiber-reinforced composites[J]. Acta Materialia, 2003, 51 (1): 177- 193.
doi: 10.1016/S1359-6454(02)00390-7
14 JOLIFF Y , BELEC L , CHAILAN J F . Modified water diffusion kinetics in an unidirectional glass/fibre composite due to the interphase area:experimental, analytical and numerical approach[J]. Composite Structures, 2013, 97 (2): 296- 303.
15 MENG M , RIZVI M J , LE H R , et al. Multi-scale modelling of moisture diffusion coupled with stress distribution in CFRP laminated composites[J]. Composite Structures, 2016, 138, 295- 304.
doi: 10.1016/j.compstruct.2015.11.028
16 HAYES B S , GAMMON L M . Optical microscopy of fiber reinforced composites[M]. Materials Park, Ohio: ASM International, 2010.
17 CRANK J . The mathematics of diffusion[M]. 2 Ed London: Clarendon Press, 1975: 47- 51.
18 GAGANI A , FAN Y , MULIANA A , et al. Micromechanical modeling of anisotropic water diffusion in glass fiber epoxy reinforced composites[J]. Journal of Composite Materials, 2018, 52 (17): 2321- 2335.
doi: 10.1177/0021998317744649
19 YANG L , YAN Y , LIU Y , et al. Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression[J]. Composites Science & Technology, 2012, 72 (15): 1818- 1825.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[8] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[9] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[10] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[13] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[14] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[15] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn