Nano-SiO2 surface grafted APTES (T-SiO2) was realized by covalent functionalization technology, and functionalized nano-SiO2 modified epoxy resin composite (T-SiO2/EP) was prepared. The surface functional groups and chemical elements of the functionalized nano-SiO2were analyzed and the mechanical and tribological properties of the T-SiO2/EP were tested. The results show that the mechanical and tribological properties of the epoxy resin are effectively improved due to the introduction of functionalized nano-SiO2. When the content of functionalized nano-SiO2 is 2%(mass fraction, same as below), the microhardness and fracture toughness of the composites (2%T-SiO2/EP) can reach the maximum, which are 70.2HD and 1.02MPa·m1/2 respectively, moreover, in dry friction condition, the friction coefficient and the wear loss reach the minimum, which are 0.49mg and 1.7mg respectively. Compared with pure epoxy resin, they are reduced by 31.9% and 34.6%, and compared with 2% unmodified nano-SiO2 reinforced epoxy resin composite, they are reduced by 14% and 10.5%, and the corresponding wear mechanism is analyzed.
MASSINGILLG L , SHEIHP S , WHITESIDER C , et al. Fundamental studies of epoxy resins for can and coil coatings II:flexibility and adhesion of epoxy resins[J]. Journal of Coatings Technology, 1990, 62, 31- 39.
2
LIN L Y , KIM D E , KIM W K , et al. Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy[J]. Surface & Coatings Technology, 2011, 205 (20): 4864- 4869.
3
GOLRU S S , ATTAR M M , RAMEZANZADEH B . Studying the influence of nano-Al2O3, particles on the corrosion performance and hydrolytic degradation resistance of an epoxy/polyamide coating on AA-1050[J]. Progress in Organic Coatings, 2014, 77 (9): 1391- 1399.
doi: 10.1016/j.porgcoat.2014.04.017
4
AZMAN N Z , SIDDIQUI S A , LOW I M . Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33 (8): 4952- 4957.
doi: 10.1016/j.msec.2013.08.023
5
VIJAYAN P P , PIONTECK J , HUCZKO A , et al. Liquid rubber and silicon carbide nanofiber modified epoxy nanocom-posites:volume shrinkage, cure kinetics and properties[J]. Composites Science & Technology, 2014, 102 (4): 65- 73.
6
CHANDRASEKARAN S , SEIDEL C , SCHULTE K . Prepar-ation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite:mechanical, electrical and thermal properties[J]. European Polymer Journal, 2013, 49 (12): 3878- 3888.
doi: 10.1016/j.eurpolymj.2013.10.008
7
KNOPP D , TANG D , NIESSNER R . Review:bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles[J]. Analytica Chimica Acta, 2009, 647 (1): 14- 30.
doi: 10.1016/j.aca.2009.05.037
8
SHIN Y , LEE D , LEE K , et al. Surface properties of silica nanoparticles modified with polymers for polymer nanocomposite applications[J]. Journal of Industrial & Engineering Chemistry, 2008, 14 (4): 515- 519.
9
LEE S I , KIM D B , SIN J H , et al. Polyurethane/silica composites, prepared via in-situ polymerization in the presence of chemically modified silicas[J]. Biochimica et Biophysica Acta, 2007, 1862 (2): 274- 283.
10
TZETZIS D , MANSOUR G , TSIAFIS I , et al. Nanoindent-ation measurements of fumed silica epoxy reinforced nanocom-posites[J]. Journal of Reinforced Plastics & Composites, 2013, 32 (3): 160- 173.
11
SIENGCHIN S . Impact, thermal and mechanical properties of high density polyethylene/flax/SiO2 composites:effect of flax reinforcing structures[J]. Journal of Reinforced Plastics & Composites, 2012, 31 (14): 959- 966.
12
WANG X , WANG L , SU Q , et al. Use of unmodified SiO2, as nanofiller to improve mechanical properties of polymer-based nanocomposites[J]. Composites Science & Technology, 2013, 89 (1): 52- 60.
13
SINGH S K , KUMAR A , JAIN A . Improving tensile and flexural properties of SiO2-epoxy polymer nanocomposite[J]. Materials Today, 2018, 5 (2): 6339- 6344.
14
ZHANG H , TANG L C , ZHANG Z , et al. Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures[J]. Polymer, 2008, 49 (17): 3816- 3825.
doi: 10.1016/j.polymer.2008.06.040
15
QI Z , TAN Y , WANG H , et al. Effects of noncovalently functionalized multiwalled carbon nanotube with hyperbranched polyesters on mechanical properties of epoxy composites[J]. Polym Test, 2017, 64, 38- 47.
doi: 10.1016/j.polymertesting.2017.09.031
16
SPANGE S . Silica surface modification by cationic polymeri-zation and carbenium intermediates[J]. Progress in Polymer Science, 2000, 25 (6): 781- 849.
doi: 10.1016/S0079-6700(00)00014-9
17
SBIRRAZZUOLI N , MITITELU-MIJA A , VINCENT L , et al. Isoconversional kinetic analysis of stoichiometric and off-stoichiometric epoxy-amine cures[J]. Thermochimica Acta, 2006, 447 (2): 167- 177.
doi: 10.1016/j.tca.2006.06.005
18
KINLOCH A J , WILLIAMS J G . Crack blunting mechanisms in polymers[J]. Journal of Materials Science, 1980, 15 (4): 987- 996.
doi: 10.1007/BF00552112
HU H X , YU S R , WANG Y H , et al. Surface chemical effects of epoxy resin in dry friction[J]. Journal of Tribology, 2007, 27 (3): 241- 245.
doi: 10.3321/j.issn:1004-0595.2007.03.010
SHAO X , TIAN J , LIU W M , et al. Effect of nano-SiO2 on tribological properties of polyethersulfone ketone composites[J]. Journal of Materials Engineering, 2002, (2): 38- 42.
doi: 10.3969/j.issn.1001-4381.2002.02.011
LEI Y , GUO J L , ZHANG Y X . Effect of nano-SiO2 filling on friction and wear properties of ultra high molecular weight polyethylene composites[J]. Lubrication & Sealing, 2006, (12): 41- 43.
doi: 10.3969/j.issn.0254-0150.2006.12.013