Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (11): 100-106    DOI: 10.11868/j.issn.1001-4381.2019.000146
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
黏度可控化制备BPDA-PDA型聚酰亚胺及表征
倪洪江1,2,*(), 邢宇1,2, 戴霄翔1,2, 李军1,2, 张代军1,2, 杨士勇3, 陈祥宝1,2
1 中国航发北京航空材料研究院 软材料技术研究中心, 北京 100095
2 先进复合材料国防科技重点实验室, 北京 100095
3 中国科学院化学研究所 高技术材料实验室, 北京 100190
Viscosity-controllable preparation and characterization of BPDA-PDA polyimide
Hong-jiang NI1,2,*(), Yu XING1,2, Xiao-xiang DAI1,2, Jun LI1,2, Dai-jun ZHANG1,2, Shi-yong YANG3, Xiang-bao CHEN1,2
1 Research Center of Soft Materials Technology, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 National Key Laboratory of Advanced Composites, Beijing 100095, China
3 Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF(1891 KB)   HTML ( 19 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

通过二酐水解程度控制改性聚酰亚胺前驱体的方法,对3,3',4,4'-联苯四酸二酐(BPDA)-对苯二胺(PDA)型聚酰亚胺前驱体溶液的黏度进行调控。前驱体的化学结构通过红外光谱(FT-IR)和核磁氢谱(1H-NMR)进行表征,并考察二酐水解对前驱体溶液黏度、亚胺化过程和材料性能的影响。结果表明:水解BPDA与PDA反应生成的前驱体,同时含有酰胺酸和羧酸铵盐官能团结构;羧酸铵盐的引入可降低前驱体溶液黏度,实现黏度在10~105cP范围内的有效调控;羧酸铵盐的存在未影响前驱体的完全亚胺化,使得材料力学性能得到保持;同时,该黏度调控方法具有降低BPDA-PDA型聚酰亚胺薄膜热膨胀系数的作用。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪洪江
邢宇
戴霄翔
李军
张代军
杨士勇
陈祥宝
关键词 BPDA-PDA型聚酰亚胺前驱体黏度调控力学性能热膨胀系数(CTE)    
Abstract

With precursor modification by regulating dianhydride hydrolysis degree, the viscosity of polyimide precursor solution, derived from 3, 3', 4, 4'-biphenyl tetracarboxylic dianhydride (BPDA) and para-phenylenediamine (PDA), was facilely manipulated. The chemical structure of the precursor was characterized by infrared (IR) spectrometry and proton nuclear magnetic resonance (1H-NMR) spectrometry. The effects of dianhydride hydrolysis on the viscosity, imidization process and properties were investigated. The results show that the precursor can be formed from hydrolytic BPDA and PDA, with amide acid and carboxylic ammonium salt groups in the molecular structure. The viscosity of the precursor can be reduced by the introduction of carboxylic ammonium salt group, achieving the effective regulation of viscosity in the 10-105cP range. Importantly, the existence of carboxylic ammonium salt shows no influence on the complete imidization of the precursor, which guarantees the maintenance of mechanical property. Interestingly, the coefficient of thermal expansion (CTE) of this BPDA-PDA polyimide films can be reduced by this viscosity manipulation method.

Key wordsBPDA-PDA polyimide    precursor    viscosity manipulation    mechanical property    coefficient of thermal expansion (CTE)
收稿日期: 2019-02-21      出版日期: 2019-11-21
中图分类号:  TN249  
基金资助:国家自然科学基金项目(51803201);中国航发自主创新专项资金项目(0804)
通讯作者: 倪洪江     E-mail: nihongjiang@iccas.ac.cn
作者简介: 倪洪江(1987-), 男, 工程师, 博士, 主要从事聚酰亚胺材料及树脂基复合材料的研究, 联系地址:北京81信箱3分箱(100095), E-mail:nihongjiang@iccas.ac.cn
引用本文:   
倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 杨士勇, 陈祥宝. 黏度可控化制备BPDA-PDA型聚酰亚胺及表征[J]. 材料工程, 2019, 47(11): 100-106.
Hong-jiang NI, Yu XING, Xiao-xiang DAI, Jun LI, Dai-jun ZHANG, Shi-yong YANG, Xiang-bao CHEN. Viscosity-controllable preparation and characterization of BPDA-PDA polyimide. Journal of Materials Engineering, 2019, 47(11): 100-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000146      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/100
Material Source Description
3, 3′, 4, 3′-biphenyl tetracarboxylic dianhydride (BPDA) Tokyo Chemical Industry Co., Ltd. Dried in vacuum at 160℃
para-phenylenediamine (PDA) Tokyo Chemical Industry Co., Ltd. Used directly
N-methyl-2-pyrrolidinone (NMP) Beijing Chemical Works Dried by CaH2 and vacuum distillation
Deionized water Lab-made Used directly
Table 1  原材料
Fig.1  BPDA-PDA型PI两种前驱体的合成
(a)PAA; (b)PAS
Fig.2  PAS(A)和PI(A)的FTIR光谱(水酐摩尔比:20%,PI亚胺化温度:280℃)
Wavenumber/cm-1 Sample Assignment
3274-2631 PAS Stretching vibration of COOH and NH bonds
1777 PI Unsymmetrical stretching vibration of imide C=O bond
1715 PI Stretching vibration of imide C=O bond
1713 PAS Stretching vibration of C=O bond in COOH
1656 PAS Stretching vibration of C=O bond in amide group (amide band Ⅰ)
1605 PAS Bending vibration of NH bond in amide group (amide band Ⅱ)
1406 PI Stretching vibration of C—N bond in imide group
1316 PAS Stretching vibration of COO-N+ bond
732 PI Bending vibration of imide C—N bond
Table 2  PAS(A)和PI(A)的红外吸收峰归属
Fig.3  PAS(A)的1H-NMR谱图(水酐摩尔比:20%)
Sample (charging sequence) Water content of solvent/% Molar ration of H2O to anhydride/% Rotary viscosity/cP
PAS(A) (dianhydride added first) 0 0 Gel
0.32 20 37000
0.55 35 12800
0.79 50 3200
1.58 100 72
PAS(B) (diamine added first) 0 0 Gel
5 316 183000
8 506 61650
10 633 45000
Table 3  PAS前驱体溶液的旋转黏度(25℃)
Fig.4  PAS(A)溶液旋转黏度(ηRot)随水/酐摩尔比的
Fig.5  不同水/酐摩尔比PAS(A)的TGA曲线
Fig.6  PAS的亚胺化反应过程
Sample Molar ratio of H2O to anhydride/% σt/MPa E/GPa CTE/(10-6·K-1)
PI(A) 20 245 6.0 15.9
35 279 6.0 10
50 243 6.2 6.2
100 Unable to be processed
PI(B) 316 166 5.3 -
Table 4  PI薄膜的力学性能和CTE
Fig.7  PI薄膜的CTE曲线
1 丁孟贤. 聚酰亚胺:化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2006.
1 DING M X . Polyimide:relationship between chemistry and structure and properties, and materials[M]. Beijing: Science Press, 2006.
2 LIAW D J , WANG K L , HUANG Y C , et al. Advanced polyimide materials:syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37 (7): 907- 974.
doi: 10.1016/j.progpolymsci.2012.02.005
3 沈超, 陈祥宝. PMR-15及其复合材料的发展与应用[J]. 材料工程, 1994, (11): 6- 9.
3 SHEN C , CHEN X B . Application and development of PMR-15 and its composites[J]. Journal of Materials Engineering, 1994, (11): 6- 9.
4 HERGENROTHER P M . The use, design, synthesis, and properties of high performance/high temperature polymers:an overview[J]. High Performance Polymers, 2003, 15 (1): 3- 45.
5 刘金刚, 倪洪江, 房光强, 等. 特种聚酰亚胺薄膜制备技术新进展[J]. 绝缘材料, 2015, 48 (1): 1- 5.
5 LIU J G , NI H J , FANG G Q , et al. New progress of manufacturing technology for functional polyimide films[J]. Insulating Materials, 2015, 48 (1): 1- 5.
6 YAMAGUCHI H . Development of non-adhesive type flexible copper clad laminate "UPISEL (R)-N"[J]. Journal of Photopolymer Science and Technology, 2003, 16 (2): 233- 236.
doi: 10.2494/photopolymer.16.233
7 NI H J , ZHANG X M , LIU J G , et al. Intrinsically heat-sealable polyimide films derived from 2, 3, 3', 4'-oxydiphthalic anhydride and aromatic diamines with various ether linkages[J]. High Performance Polymers, 2017, 29 (3): 362- 371.
doi: 10.1177/0954008316645170
8 REE M , KIM K , WOO S H , et al. Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities[J]. Journal of Applied Physics, 1997, 81 (2): 698- 708.
doi: 10.1063/1.364210
9 MATSUMURA A , TERUI Y , ANDO S , et al. Effects of structural isomerism and precursor structures on thermo-optic coefficients of BPDA/PDA polyimide films[J]. Journal of Photopolymer Science and Technology, 2007, 20 (2): 167- 174.
doi: 10.2494/photopolymer.20.167
10 CHEN J S , YANG S Y , TAO Z Q , et al. Processing and properties of carbon fiber-reinforced PMR type polyimide composites[J]. High Performance Polymers, 2006, 18 (3): 377- 396.
doi: 10.1177/0954008306063395
11 WILSON D . PMR-15 processing, properties and problems-a review[J]. British Polymer Journal, 1988, 20 (5): 405- 416.
doi: 10.1002/pi.4980200505
12 FROST L W , KESSE I . Spontaneous degradation of aromatic polypromellitamic acids[J]. Journal of Applied Polymer Science, 1964, 8 (3): 1039- 1051.
doi: 10.1002/app.1964.070080302
13 DINE-HART R A , WRIGHT W W . Preparation and fabrication of aromatic polyimides[J]. Journal of Applied Polymer Science, 1967, 11 (5): 609- 627.
doi: 10.1002/app.1967.070110501
14 BOWER G M , FROST L W . Aromatic polyimides[J]. Journal of Polymer Science:Part A, 1963, 1 (10): 3135- 3150.
15 IMAI Y. Rapid synthesis of polyimides from nylon-salt-type monomers[M]//Kricheldorf H R. Progress in Polyimide Chemistry Ⅰ. Berlin: Springer, 1999: 1-22.
16 ITOYA K , KUMAGAI Y , KAKIMOTO M A , et al. High-pressure synthesis of aliphatic polyimides via salt monomers composed of aliphatic diamines and oxydiphthalic acid[J]. Macromolecules, 1994, 27 (15): 4101- 4105.
doi: 10.1021/ma00093a011
17 BRUNEL R , MARESTIN C , MARTIN V , et al. Water-borne polyimides via microwave-assisted polymerization[J]. High Performance Polymers, 2010, 22 (1): 82- 94.
18 TONG Y J , LI Y S , DING M X . Synthesis of aromatic polyimides in DMAc containing large amount of water and the properties thereof[J]. Polymer Bulletin, 1999, 42 (1): 47- 53.
doi: 10.1007/s002890050433
19 KRISHNAN P S G , VORA R H , CHUNG T S , et al. Studies on ionic salt of polyamic acid and related compounds[J]. Journal of Polymer Research, 2004, 11 (4): 299- 308.
20 GAO X , FU H , QIAO R , et al. Copper-catalyzed synthesis of primary arylamines via cascade reactions of aryl halides with amidine hydrochlorides[J]. The Journal of Organic Chemistry, 2008, 73 (17): 6864- 6866.
doi: 10.1021/jo800818e
21 SAEED M B , ZHAN M S . Effects of monomer structure and imidization degree on mechanical properties and viscoelastic behavior of thermoplastic polyimide films[J]. European Polymer Journal, 2006, 42 (8): 1844- 1854.
doi: 10.1016/j.eurpolymj.2006.03.004
22 NUMATA S I , OOHARA S , FUJISAKI K , et al. Thermal expansion behavior of various aromatic polyimides[J]. Journal of Applied Polymer Science, 1986, 31 (1): 101- 110.
23 ISHII J , TAKATA A , OAMI Y , et al. Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films[J]. European Polymer Journal, 2010, 46 (4): 681- 693.
doi: 10.1016/j.eurpolymj.2010.01.007
24 SENSUI N , ISHII J , TAKATA A , et al. Ultra-low CTE and improved toughness of PMDA/PDA polyimide-based molecular composites containing asymmetric BPDA-type polyimides[J]. High Performance Polymers, 2009, 21 (6): 709- 728.
doi: 10.1177/0954008308096624
25 MIWA T , OKABE Y , ISHIDA M . Effects of precursor structure and imidization process on thermal expansion coefficient of polyimide (BPDA/PDA)[J]. Polymer, 1997, 38 (19): 4945- 4949.
doi: 10.1016/S0032-3861(96)01087-7
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn