1 Research Center of Soft Materials Technology, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 National Key Laboratory of Advanced Composites, Beijing 100095, China 3 Laboratory of Advanced Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
With precursor modification by regulating dianhydride hydrolysis degree, the viscosity of polyimide precursor solution, derived from 3, 3', 4, 4'-biphenyl tetracarboxylic dianhydride (BPDA) and para-phenylenediamine (PDA), was facilely manipulated. The chemical structure of the precursor was characterized by infrared (IR) spectrometry and proton nuclear magnetic resonance (1H-NMR) spectrometry. The effects of dianhydride hydrolysis on the viscosity, imidization process and properties were investigated. The results show that the precursor can be formed from hydrolytic BPDA and PDA, with amide acid and carboxylic ammonium salt groups in the molecular structure. The viscosity of the precursor can be reduced by the introduction of carboxylic ammonium salt group, achieving the effective regulation of viscosity in the 10-105cP range. Importantly, the existence of carboxylic ammonium salt shows no influence on the complete imidization of the precursor, which guarantees the maintenance of mechanical property. Interestingly, the coefficient of thermal expansion (CTE) of this BPDA-PDA polyimide films can be reduced by this viscosity manipulation method.
Unsymmetrical stretching vibration of imide C=O bond
1715
PI
Stretching vibration of imide C=O bond
1713
PAS
Stretching vibration of C=O bond in COOH
1656
PAS
Stretching vibration of C=O bond in amide group (amide band Ⅰ)
1605
PAS
Bending vibration of NH bond in amide group (amide band Ⅱ)
1406
PI
Stretching vibration of C—N bond in imide group
1316
PAS
Stretching vibration of COO-N+ bond
732
PI
Bending vibration of imide C—N bond
Table 2 PAS(A)和PI(A)的红外吸收峰归属
Fig.3 PAS(A)的1H-NMR谱图(水酐摩尔比:20%)
Sample (charging sequence)
Water content of solvent/%
Molar ration of H2O to anhydride/%
Rotary viscosity/cP
PAS(A) (dianhydride added first)
0
0
Gel
0.32
20
37000
0.55
35
12800
0.79
50
3200
1.58
100
72
PAS(B) (diamine added first)
0
0
Gel
5
316
183000
8
506
61650
10
633
45000
Table 3 PAS前驱体溶液的旋转黏度(25℃)
Fig.4 PAS(A)溶液旋转黏度(ηRot)随水/酐摩尔比的
Fig.5 不同水/酐摩尔比PAS(A)的TGA曲线
Fig.6 PAS的亚胺化反应过程
Sample
Molar ratio of H2O to anhydride/%
σt/MPa
E/GPa
CTE/(10-6·K-1)
PI(A)
20
245
6.0
15.9
35
279
6.0
10
50
243
6.2
6.2
100
Unable to be processed
PI(B)
316
166
5.3
-
Table 4 PI薄膜的力学性能和CTE
Fig.7 PI薄膜的CTE曲线
1
丁孟贤. 聚酰亚胺:化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2006.
1
DING M X . Polyimide:relationship between chemistry and structure and properties, and materials[M]. Beijing: Science Press, 2006.
2
LIAW D J , WANG K L , HUANG Y C , et al. Advanced polyimide materials:syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37 (7): 907- 974.
doi: 10.1016/j.progpolymsci.2012.02.005
SHEN C , CHEN X B . Application and development of PMR-15 and its composites[J]. Journal of Materials Engineering, 1994, (11): 6- 9.
4
HERGENROTHER P M . The use, design, synthesis, and properties of high performance/high temperature polymers:an overview[J]. High Performance Polymers, 2003, 15 (1): 3- 45.
LIU J G , NI H J , FANG G Q , et al. New progress of manufacturing technology for functional polyimide films[J]. Insulating Materials, 2015, 48 (1): 1- 5.
6
YAMAGUCHI H . Development of non-adhesive type flexible copper clad laminate "UPISEL (R)-N"[J]. Journal of Photopolymer Science and Technology, 2003, 16 (2): 233- 236.
doi: 10.2494/photopolymer.16.233
7
NI H J , ZHANG X M , LIU J G , et al. Intrinsically heat-sealable polyimide films derived from 2, 3, 3', 4'-oxydiphthalic anhydride and aromatic diamines with various ether linkages[J]. High Performance Polymers, 2017, 29 (3): 362- 371.
doi: 10.1177/0954008316645170
8
REE M , KIM K , WOO S H , et al. Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities[J]. Journal of Applied Physics, 1997, 81 (2): 698- 708.
doi: 10.1063/1.364210
9
MATSUMURA A , TERUI Y , ANDO S , et al. Effects of structural isomerism and precursor structures on thermo-optic coefficients of BPDA/PDA polyimide films[J]. Journal of Photopolymer Science and Technology, 2007, 20 (2): 167- 174.
doi: 10.2494/photopolymer.20.167
10
CHEN J S , YANG S Y , TAO Z Q , et al. Processing and properties of carbon fiber-reinforced PMR type polyimide composites[J]. High Performance Polymers, 2006, 18 (3): 377- 396.
doi: 10.1177/0954008306063395
11
WILSON D . PMR-15 processing, properties and problems-a review[J]. British Polymer Journal, 1988, 20 (5): 405- 416.
doi: 10.1002/pi.4980200505
12
FROST L W , KESSE I . Spontaneous degradation of aromatic polypromellitamic acids[J]. Journal of Applied Polymer Science, 1964, 8 (3): 1039- 1051.
doi: 10.1002/app.1964.070080302
13
DINE-HART R A , WRIGHT W W . Preparation and fabrication of aromatic polyimides[J]. Journal of Applied Polymer Science, 1967, 11 (5): 609- 627.
doi: 10.1002/app.1967.070110501
14
BOWER G M , FROST L W . Aromatic polyimides[J]. Journal of Polymer Science:Part A, 1963, 1 (10): 3135- 3150.
15
IMAI Y. Rapid synthesis of polyimides from nylon-salt-type monomers[M]//Kricheldorf H R. Progress in Polyimide Chemistry Ⅰ. Berlin: Springer, 1999: 1-22.
16
ITOYA K , KUMAGAI Y , KAKIMOTO M A , et al. High-pressure synthesis of aliphatic polyimides via salt monomers composed of aliphatic diamines and oxydiphthalic acid[J]. Macromolecules, 1994, 27 (15): 4101- 4105.
doi: 10.1021/ma00093a011
17
BRUNEL R , MARESTIN C , MARTIN V , et al. Water-borne polyimides via microwave-assisted polymerization[J]. High Performance Polymers, 2010, 22 (1): 82- 94.
18
TONG Y J , LI Y S , DING M X . Synthesis of aromatic polyimides in DMAc containing large amount of water and the properties thereof[J]. Polymer Bulletin, 1999, 42 (1): 47- 53.
doi: 10.1007/s002890050433
19
KRISHNAN P S G , VORA R H , CHUNG T S , et al. Studies on ionic salt of polyamic acid and related compounds[J]. Journal of Polymer Research, 2004, 11 (4): 299- 308.
20
GAO X , FU H , QIAO R , et al. Copper-catalyzed synthesis of primary arylamines via cascade reactions of aryl halides with amidine hydrochlorides[J]. The Journal of Organic Chemistry, 2008, 73 (17): 6864- 6866.
doi: 10.1021/jo800818e
21
SAEED M B , ZHAN M S . Effects of monomer structure and imidization degree on mechanical properties and viscoelastic behavior of thermoplastic polyimide films[J]. European Polymer Journal, 2006, 42 (8): 1844- 1854.
doi: 10.1016/j.eurpolymj.2006.03.004
22
NUMATA S I , OOHARA S , FUJISAKI K , et al. Thermal expansion behavior of various aromatic polyimides[J]. Journal of Applied Polymer Science, 1986, 31 (1): 101- 110.
23
ISHII J , TAKATA A , OAMI Y , et al. Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films[J]. European Polymer Journal, 2010, 46 (4): 681- 693.
doi: 10.1016/j.eurpolymj.2010.01.007
24
SENSUI N , ISHII J , TAKATA A , et al. Ultra-low CTE and improved toughness of PMDA/PDA polyimide-based molecular composites containing asymmetric BPDA-type polyimides[J]. High Performance Polymers, 2009, 21 (6): 709- 728.
doi: 10.1177/0954008308096624
25
MIWA T , OKABE Y , ISHIDA M . Effects of precursor structure and imidization process on thermal expansion coefficient of polyimide (BPDA/PDA)[J]. Polymer, 1997, 38 (19): 4945- 4949.
doi: 10.1016/S0032-3861(96)01087-7