Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (11): 155-162    DOI: 10.11868/j.issn.1001-4381.2018.000446
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响
王盈辉1,2, 王快社1,2,*(), 王文1,2, 彭湃1,2, 车倩颖1,2, 乔柯1,2
1 西安建筑科技大学 冶金工程学院, 西安 710055
2 西安建筑科技大学 功能材料加工国家地方联合工程研究中心, 西安 710055
Effect of rotation speed on microstructure and properties of dissimilar submerged friction stir welding joints of aluminium and pure copper
Ying-hui WANG1,2, Kuai-she WANG1,2,*(), Wen WANG1,2, Pai PENG1,2, Qian-ying CHE1,2, Ke QIAO1,2
1 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 National and Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an 710055, China
全文: PDF(6984 KB)   HTML ( 17 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

采用水下搅拌摩擦焊接(submerged friction stir welding,SFSW)技术对2024-T4铝合金和紫铜进行连接,研究转速对接头微观组织与力学性能的影响。结果表明:接头成型良好,无裂纹、孔洞等缺陷。随转速升高,接头表面平整度提高,大量铜被卷入焊核区(nugget zone,NZ),NZ组织结构逐渐混乱。SFSW过程中,冷却水有效抑制了晶粒粗化和脆性金属间化合物生成。当转速为750r/min时,接头抗拉强度为227MPa,达到铜母材的70.3%,随转速增大,接头的抗拉强度和伸长率降低。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王盈辉
王快社
王文
彭湃
车倩颖
乔柯
关键词 水下搅拌摩擦焊接2024铝合金紫铜微观组织力学性能    
Abstract

2024-T4 aluminium alloy and pure copper were welded by submerged friction stir welding (SFSW) and the effect of rotation speed on microstructure and mechanical properties of SFSW joints was studied. The results indicate that the SFSW joint is well formed, without cracks, holes and other defects. With the increase of rotation speed, the surface of the SFSW joint is smooth and the smoothness is improved. Meanwhile a large number of copper is involved in the nugget zone (NZ), and the structure in NZ is gradually disordered; the forced cooling effect of water effectively inhibits the formation of grain coarsening and brittle intermetallic compound during SFSW; the tensile strength of joint is 227MPa, which is 70.3% of the tensile strength of the copper base metal(BM) at the rotational speed of 750r/min and the tensile strength and elongation of the SFSW joint decrease with the increase of rotation speed.

Key wordssubmerged friction stir welding    2024 aluminium alloy    pure copper    microstructure    mech-anical property
收稿日期: 2018-04-23      出版日期: 2019-11-21
中图分类号:  TG457.1  
基金资助:国家自然科学基金资助项目(U1760201);国家自然科学基金资助项目(51574192)
通讯作者: 王快社     E-mail: wangkuaishe888@126.com
作者简介: 王快社(1966—), 男, 教授, 博士, 研究方向为搅拌摩擦焊接、搅拌摩擦加工, 联系地址:陕西省西安市碑林区雁塔路13号西安建筑科技大学(710055), E-mail:wangkuaishe888@126.com
引用本文:   
王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
Ying-hui WANG, Kuai-she WANG, Wen WANG, Pai PENG, Qian-ying CHE, Ke QIAO. Effect of rotation speed on microstructure and properties of dissimilar submerged friction stir welding joints of aluminium and pure copper. Journal of Materials Engineering, 2019, 47(11): 155-162.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000446      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/155
Fig.1  水下搅拌摩擦焊接示意图
Fig.2  拉伸试样尺寸
Fig.3  不同转速下SFSW接头表面(1)及横截面(2)宏观形貌
(a)SFSW-750;(b)SFSW-1180;(c)SFSW-1500
Fig.4  SFSW接头微观形貌
(a)紫铜;(b)2024铝合金;(c)图 3(a-2)区域A;(d)图 3(a-2)区域B;(e)图 3(a-2)区域C;(f)图 3(c-2)区域D
Fig.5  SFSW接头X射线衍射图谱
Fig.6  铝铜结合界面EDS线扫描结果
(a)SFSW-750;(b)SFSW-1180;(c)SFSW-1500
Fig.7  接头横截面显微硬度分布
Fig.8  不同焊接参数下SFSW接头的拉伸性能
Fig.9  不同转速下接头拉伸断裂横截面宏观形貌
(a)SFSW-750;(b)SFSW-1180;(c)SFSW-1500
Fig.10  母材的断口形貌
(a)Cu; (b)Al
Fig.11  接头拉伸断口SEM形貌
(a)SFSW-750;(b)SFSW-1180;(c)SFSW-1500
1 LI Z W , JI S D , MA Y N , et al. Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy[J]. Intern-ational Journal of Advanced Manufacturing Technology, 2016, 86 (5/8): 1925- 1932.
2 ZHANG Q Z , GONG W B , LIU W . Microstructure and mechanical properties of dissimilar Al-Cu joints by friction stir welding[J]. Transactions of Nonferrous Metals Society of China, 2015, 25 (6): 1779- 1786.
doi: 10.1016/S1003-6326(15)63783-9
3 XUE P , NI D R , WANG D , et al. Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al-Cu joints[J]. Materials Science and Engineering:A, 2011, 528 (13/14): 4683- 4689.
4 AL-ROUBAIY A O , NABAT S M , BATAKO A D L . Experi-mental and theoretical analysis of friction stir welding of Al-Cu joints[J]. International Journal of Advanced Manufacturing Technology, 2014, 71 (9/12): 1631- 1642.
5 乔柯, 王快社, 王文, 等. 转速对铝铜层状复合板搅拌摩擦焊接接头组织性能的影响[J]. 航空材料学报, 2017, 37 (5): 35- 40.
5 QIAO K , WANG K S , WANG W , et al. Effect of rotation rate on microstructure and properties of friction stir welded joints of Al/Cu clad plates[J]. Journal of Aeronautical Materials, 2017, 37 (5): 35- 40.
6 PRONICHEV D V , GUREVICH L M , TRYKOV Y P , et al. Investigation of aluminum-copper bimetal-based intermetallide coating produced by contact melting method[J]. Inorganic Materials:Applied Research, 2016, 7 (1): 97- 101.
7 GALVÃO I , LEAL R M , LOUREIRO A , et al. Material flow in heterogeneous friction stir welding of aluminium and copper thin sheets[J]. Science and Technology of Welding and Joining, 2013, 15 (8): 654- 660.
8 THOMAS W M, MURCH M G, NICHOLAS E D, et al. Improvements relating to friction welding: EP0653265[P]. 1995-05-17.
9 MOFID M A , ABDOLLAH-ZADEH A , GHAINI F M , et al. Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen:an improved method to join Al alloys to Mg alloys[J]. Metallurgical and Materials Transactions A, 2012, 43 (13): 5106- 5114.
doi: 10.1007/s11661-012-1314-2
10 ABDOLLAH-ZADEH A , SAEID T , SAZGARI B . Microst-ructural and mechanical properties of friction stir welded aluminum/copper lap joints[J]. Journal of Alloys and Comp-ounds, 2008, 460 (1/2): 535- 538.
11 ZHAO Y , JIANG S , YANG S , et al. Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding[J]. International Journal of Advanced Manufacturing Technology, 2016, 83 (1/4): 673- 679.
12 ZHANG J Q , SHEN Y F , YAO X , et al. Investigation on dissimilar underwater friction stir lap welding of 6061-T6 alumi-num alloy to pure copper[J]. Materials & Design, 2014, 64, 74- 80.
13 HAJINEZHAD M , AZIZI A . Numerical analysis of effect of coolant on the transient temperature in underwater friction stir welding of Al6061-T6[J]. International Journal of Advanced Manufacturing Technology, 2016, 83 (5/8): 1241- 1252.
14 郝亚鑫, 王文, 徐瑞琦, 等. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44 (6): 70- 75.
14 HAO Y X , WANG W , XU R Q , et al. Effect of post weld heat treatment on microstructure and mechanical properties of submerged friction stir welded 7A04 aluminum alloy[J]. Journal of Materials Engineering, 2016, 44 (6): 70- 75.
15 ZHANG H J , LIU H J , LEI Y U . Thermal modeling of underwater friction stir welding of high strength aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (4): 1114- 1122.
doi: 10.1016/S1003-6326(13)62573-X
16 王文, 李天麒, 乔柯, 等. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45 (10): 32- 38.
doi: 10.11868/j.issn.1001-4381.2015.001234
16 WANG W , LI T Q , QIAO K , et al. Effect of rotation rate on microstructure and properties of underwater friction stir welded 7A04-T6 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45 (10): 32- 38.
doi: 10.11868/j.issn.1001-4381.2015.001234
17 McNELLEY T R , SWAMINATHAN S , SU J Q . Recry-stallization mechanisms during friction stir welding/processing of aluminum alloys[J]. Scripta Materialia, 2008, 58 (5): 349- 354.
doi: 10.1016/j.scriptamat.2007.09.064
18 BHATTACHARYA T K , DAS H , JANA S S , et al. Num-erical and experimental investigation of thermal history, material flow and mechanical properties of friction stir welded aluminium alloy to DHP copper dissimilar joint[J]. International Journal of Advanced Manufacturing Technology, 2017, 88 (1/4): 1- 15.
19 GALVÃO I , VERDERA D , GESTO D , et al. Influence of aluminium alloy type on dissimilar friction stir lap welding of aluminium to copper[J]. Journal of Materials Processing Technology, 2013, 213 (11): 1920- 1928.
20 GALVÃO I , OLIVEIRA J C , LOUREIRO A , et al. Formation and distribution of brittle structures in friction stir welding of aluminium and copper:influence of process parameters[J]. Science and Technology of Welding and Joining, 2011, 16 (8): 681- 689.
doi: 10.1179/1362171811Y.0000000057
21 LIU H J , SHEN J J , ZHOU L , et al. Microstructural chara-cterisation and mechanical properties of friction stir welded joints of aluminium alloy to copper[J]. Science and Technology of Welding and Joining, 2013, 16 (1): 92- 98.
22 AVETTAND-FENOËL M N , TAILLARD R , JI G , et al. Multiscale study of interfacial intermetallic compounds in a dissimilar Al6082-T6/Cu friction-stir weld[J]. Metallurgical and Materials Transactions A, 2012, 43 (12): 4655- 4666.
23 MUTHU M F X , JAYABALAN V . Tool travel speed effects on the microstructure of friction stir welded aluminium-copper joints[J]. Journal of Materials Processing Technology, 2015, 217, 105- 113.
24 JONES M J , HEURTIER P , DESRAYAUD C , et al. Corr-elation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy[J]. Scripta Materialia, 2005, 52 (8): 693- 697.
doi: 10.1016/j.scriptamat.2004.12.027
25 LIU H J , SHEN J J , XIE S , et al. Weld appearance and microstructural characteristics of friction stir butt barrier welded joints of aluminium alloy to copper[J]. Science and Technology of Welding and Joining, 2012, 17 (2): 104- 110.
doi: 10.1179/1362171811Y.0000000086
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[4] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[7] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[11] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[12] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[15] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn