Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (12): 85-91    DOI: 10.11868/j.issn.1001-4381.2018.000863
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能
魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔
哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040
Microstructure and mechanical properties of Al2O3/AZ31 composites prepared by multi-pass hot extrusion
WEI Shuai-hu, HU Mao-liang, JI Ze-sheng, XU Hong-yu, WANG Ye
School of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
全文: PDF(4403 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用多道次热挤压制备Al2O3颗粒增强AZ31镁基复合材料,利用OM,SEM,TEM对Al2O3/AZ31复合材料进行组织观察,利用维氏硬度仪、电子万能拉伸试验机对Al2O3/AZ31复合材料进行力学性能测试。结果表明:经过多道次热挤压后,Al2O3颗粒均匀地分散在AZ31镁基体中,Al2O3颗粒对基体组织的晶粒细化作用得到增强,复合材料的晶粒尺寸随着道次的增加而显著减小。经过4道次热挤压后,Al2O3/AZ31复合材料的力学性能显著提高,其硬度,抗拉强度和屈服强度分别达到89HV,305MPa和198MPa,相比于第1道次热挤压后,其硬度,抗拉强度和屈服强度分别提高了19.2%,14.8%和14.1%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏帅虎
胡茂良
吉泽升
许红雨
王晔
关键词 热挤压镁基复合材料力学性能动态再结晶显微组织    
Abstract:Multi-pass hot extrusion was used to prepare the Al2O3/AZ31 composite.The microstru-cture was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and mechanical properties were tested by Vickers hardness tester and electron universal strength tester. The results show that Al2O3 particles are uniformly distributed in AZ31 magnesium matrix by multi-pass hot extrusion. The grain refining effect of Al2O3 particles on the matrix is enhanced, and the grain size of the composite decreases significantly with the increase of the pass. During the hot extrusion process, the dislocation density around the Al2O3 particles increases, and the high-density dislocation region facilitates the dynamic recrystallization nucleation, so that the grains of the Al2O3/AZ31 composite are significantly refined. The Al2O3 particles are gradually distributed into a long strip from the initial island distribution, then distributed in a linear pattern, and finally distributed uniformly in the form of particles in the AZ31 magnesium matrix. After fourth-pass hot extrusion, the mechanical properties of Al2O3/AZ31 composite are significantly improved, and hardness, tensile strength and yield strength are 89HV, 305MPa and 198MPa, respectively. The hardness, tensile strength and yield strength increase by 19.2%, 14.8%, and 14.1%, respectively, compared with the first-pass hot extrusion.
Key wordshot extrusion    magnesium matrix composite    mechanical property    dynamic recrystalli-zation    microstructure
收稿日期: 2018-07-17      出版日期: 2019-12-17
中图分类号:  TB331  
基金资助: 
通讯作者: 胡茂良(1980-),男,教授,博士,研究方向为铝镁合金的固相回收、镁基复合材料的制备与性能,联系地址:黑龙江省哈尔滨市香坊区林园路4号哈尔滨理工大学南区材料科学与工程学院(150040),E-mail:humaoliang@hrbust.edu.cn     E-mail: humaoliang@hrbust.edu.cn
引用本文:   
魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
WEI Shuai-hu, HU Mao-liang, JI Ze-sheng, XU Hong-yu, WANG Ye. Microstructure and mechanical properties of Al2O3/AZ31 composites prepared by multi-pass hot extrusion. Journal of Materials Engineering, 2019, 47(12): 85-91.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000863      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/85
[1] 刘军,张金玲,渠治波,等.稀土Gd对AZ31镁合金耐蚀性能的影响[J].材料工程,2018,46(6):73-79. LIU J, ZHANG J L, QU Z B, et al. Effect of rare earth Gd on corrosion resistance of AZ31 magnesium alloy[J]. Journal of Materials Engineering, 2018, 46(6):73-79.
[2] CHELLIAH N M, SINGH H, SURAPPA M K. Processing, microstructural evolution and strength properties of in-situ magnesium matrix composites containing nano-sized polymer derived SiCNO particles[J]. Materials Science and Engineering:A, 2017, 685:429-438.
[3] 常海,王金龙,郑明毅,等.等通道角变形对搅拌铸造SiCP/AZ91复合材料显微组织与室温性能的影响[J].复合材料学报, 2017, 34(3):611-618. CHANG H, WANG J L, ZHENG M Y, et al. Effect of equal channel angular pressing on the microstructure evolution and mechanical property of the SiCP/AZ91 composite fabricated by stir-casting[J]. Acta Materiae Compositae Sinica, 2017, 34(3):611-618.
[4] 李结木,邓坤坤.热处理对颗粒增强镁基复合材料组织与性能的影响[J].材料热处理学报,2012,33(9):29-32. LI J M, DENG K K. Effect of heat treatment on microstructure and mechanical properties of particle reinforced magnesium matrix composite[J]. Transactions of Materials and Heat Treatment, 2012, 33(9):29-32.
[5] KARTHICK E, MATHAI J, TONY J M, et al. Processing, microstructure and mechanical properties of Al2O3 and SiC reinforced magnesium metal matrix hybrid composites[J]. Materials Today Proceedings, 2017, 4(6):6750-6756.
[6] 冯艳,陈超,彭超群,等.镁基复合材料的研究进展[J].中国有色金属学报, 2017,27(12):2385-2407. FENG Y, CHEN C, PENG C Q, et al. Research progress on magnesium matrix composites[J]. The Chinese Journal of Nonferrous Metals, 2017,27(12):2385-2407.
[7] WU K, DENG K K, NIE K B, et al. Microstructure and mechanical properties of SiCp/AZ91 composite deformed through a combination of forging and extrusion process[J]. Materials & Design, 2010, 31(8):3929-3932.
[8] PARAMSOTHY M, HASSAN S F, SRIKANTH N, et al. Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles[J]. Materials Science and Engineering:A, 2009, 527(1/2):162-168.
[9] XIAO P, GAO Y, YANG C, et al. Microstructure, mechanical properties and strengthening mechanisms of Mg matrix composites reinforced with in situ nanosized TiB2 particles[J]. Materials Science and Engineering:A, 2018, 710:251-259.
[10] HABIBNEJAD K M, MAHMUDI R, POOLE W J. Work hardening behavior of Mg-based nano-composites strengthened by Al2O3 nano-particles[J]. Materials Science and Engineering:A, 2013, 567(4):89-94.
[11] SRINIVASAN M, LOGANATHAN C, NARAYANASAMY R, et al. Study on hot deformation behavior and microstructure evolution of cast-extruded AZ31B magnesium alloy and nanocomposite using processing map[J]. Materials & Design, 2013, 47:449-455.
[12] 范艳艳,李秋书,李亚斐. Al2O3颗粒增强AZ91D镁基复合材料的研究[J]. 中国铸造装备与技术, 2011(1):16-19. FAN Y Y, LI Q S, LI Y F. A study on AZ91D Mg matrix compound materials enforced by Al2O3 particles[J]. China Foundry Machinery & Technology, 2011(1):16-19.
[13] WEN L H, JI Z S, LI X L. Effect of extrusion ratio on microstructure and mechanical properties of Mg-Nd-Zn-Zr alloys prepared by a solid recycling process[J]. Materials Characterization, 2008, 59(11):1655-1660.
[14] ZHU Y, HU M L, WANG D J, et al. Microstructure and mechanical properties of AZ31-Ce prepared by multi-pass solid-phase synthesis[J]. Materials Science and Technology, 2018, 34(7):876-884.
[15] DENG K K, WU K, WANG X J, et al. Microstructure evolution and mechanical properties of a particulate reinforced magnesium matrix composites forged at elevated temperatures[J]. Materials Science and Engineering:A, 2010, 527(6):1630-1635.
[16] CAVALIERE P, EVANGELISTA E. Isothermal forging of metal matrix composites:recrystallization behaviour by means of deformation efficiency[J]. Composites Science and Technology, 2006, 66(2):357-362.
[17] 何广进,李文珍.纳米颗粒分布对镁基复合材料强化机制的影响[J].复合材料学报, 2013,30(2):105-110. HE G J, LI W Z. Influence of nano particle distribution on the strengthening mechanisms of magnesium matrix composites[J]. Acta Materiae Compositae Sinica, 2013, 30(2):105-110.
[18] PARAMSOTHY M, CHAN J, KWOK R, et al. The synergistic ability of Al2O3 nanoparticles to enhance mechanical response of hybrid alloy AZ31/AZ91[J]. Journal of Alloys and Compounds, 2011, 509(28):7572-7578.
[19] HASSAN S F, PARAMSOTHY M, PATEL F, et al. High temperature tensile response of nano-Al2O3 reinforced AZ31 nanocomposites[J]. Materials Science and Engineering:A, 2012, 558:278-284.
[20] ALAM M E, HAMOUDA A M S, NGUYEN Q B, et al. Improving microstructural and mechanical response of new AZ41 and AZ51 magnesium alloys through simultaneous addition of nano-sized Al2O3 particulates and Ca[J]. Journal of Alloys and Compounds, 2013, 574:565-572.
[21] KOIKE J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature[J]. Metallurgical and Materials Transactions A, 2005, 36(7):1689-1696.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[3] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[6] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[7] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[8] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[9] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[10] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[11] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[12] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[13] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[14] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[15] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn