Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 98-107    DOI: 10.11868/j.issn.1001-4381.2018.000157
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响
林梦晓1,2,3, 张杰2,3, 蒋全通2,3, 李佳润2, 路东柱2,3, 侯保荣2,3, 孙园园4
1. 上海海洋大学 海洋生态与环境学院, 上海 201306;
2. 中国科学院海洋研究所中国科学院海洋环境腐蚀与生物污损重点实验室, 山东 青岛 266071;
3. 青岛海洋科学与技术国家实验室 海洋腐蚀与防护开放工作室, 山东 青岛 266237;
4. 中国科学院海洋研究所 中国科学院实验海洋生物学重点实验室, 山东 青岛 266071
Effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in natural seawater
LIN Meng-xiao1,2,3, ZHANG Jie2,3, JIANG Quan-tong2,3, LI Jia-run2, LU Dong-zhu2,3, HOU Bao-rong2,3, SUN Yuan-yuan4
1. College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China;
2. Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China;
3. Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China;
4. Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
全文: PDF(5924 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用X射线衍射、扫描电子显微镜、X射线能谱仪等表面分析技术以及电化学技术,以稀土镁合金Mg-3Y-1.5Nd为基体,研究小球藻对其腐蚀行为的影响。结果表明:含小球藻培养液和不含小球藻培养液的镁合金表面主要腐蚀产物均为Mg(OH)2,Mg3(PO4)2以及Mg2(OH)3Cl;含小球藻培养液的镁合金表面腐蚀产物中镁元素的占比较未含小球藻要小(29.6%vs 39.8%);腐蚀产物存在疏松的结构有利于腐蚀性离子侵入,促进镁合金的进一步腐蚀;小球藻的光合作用导致生物膜保护层下出现高浓度的溶解氧,使氧还原阴极电流变大,从而增大Mg-3Y-1.5Nd合金的腐蚀速率。综上所述,当小球藻存在时,Mg-3Y-1.5Nd合金受到的腐蚀更为严重。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林梦晓
张杰
蒋全通
李佳润
路东柱
侯保荣
孙园园
关键词 Mg-3Y-1.5Nd合金小球藻微生物腐蚀电化学    
Abstract:The effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in f/2 culture medium was studied by means of X-ray diffraction, scanning electron microscope, energy dispersive analysis system of X-ray and other electrochemistry test. Results show that the main corrosion products on the surface of alloy with and without chlorella vulgaris are Mg (OH)2,Mg3 (PO4)2 and Mg2 (OH)3Cl; Mg and O are present on the specimen surface, and the content of Mg in culture medium with chlorella vulgaris (29.6%) is lower than that without chlorella vulgaris (39.8%); and corrosive ions invade the loose corrosion product structure and promote further corrosion of the alloy; the high O2 concentration produced by the photosynthesis of chlorella vulgaris results in the increase of local O2 concentration underneath the biofilm, which adds oxygen reduction cathodic currents and enhances corrosion. It is conduded that the average corrosion rate in the presence of chlorella vulgaris is more serious than that in the absence of chlorella vulgaris.
Key wordsMg-3Y-1.5Nd alloy    chlorella vulgaris    microbiological corrosion    electrochemistry
收稿日期: 2018-02-07      出版日期: 2020-01-09
中图分类号:  TG171  
基金资助: 
通讯作者: 张杰(1976-),男,研究员,博士,主要从事海洋腐蚀与防护的研究,联系地址:山东省青岛市市南区南海路7号中国科学院海洋研究所(266071),E-mail:zhangjie@qdio.ac.cn     E-mail: zhangjie@qdio.ac.cn
引用本文:   
林梦晓, 张杰, 蒋全通, 李佳润, 路东柱, 侯保荣, 孙园园. 海水中小球藻对Mg-3Y-1.5Nd镁合金腐蚀行为的影响[J]. 材料工程, 2020, 48(1): 98-107.
LIN Meng-xiao, ZHANG Jie, JIANG Quan-tong, LI Jia-run, LU Dong-zhu, HOU Bao-rong, SUN Yuan-yuan. Effect of chlorella vulgaris on corrosion behavior of Mg-3Y-1.5Nd alloy in natural seawater. Journal of Materials Engineering, 2020, 48(1): 98-107.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000157      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/98
[1] ESMAILY M, SVENSSON J E, FAJARDO S, et al. Fundamentals and advances in magnesium alloy corrosion[J]. Progress in Materials Science, 2017, 89:92-193.
[2] 张津,章宗和. 镁合金及应用[M]. 北京:化学工业出版社, 2004. ZHANG J, ZHANG Z H. Magnesium alloy and application[M]. Beijing:Chemical Industry Press, 2004.
[3] SONG G L, SHI Z. Corrosion mechanism and evaluation of anodized magnesium alloys[J]. Corrosion Science, 2014, 85:126-140.
[4] 张新,张奎. 镁合金腐蚀行为及机理研究进展[J]. 腐蚀科学与防护技术, 2015, 27(1):78-84. ZHANG X, ZHANG K. Progresses in corrosion behavior and mechanism of magnesium alloys[J]. Corrosion Science and Protection Technology, 2015, 27(1):78-84.
[5] 霍东兴,梁精龙,李慧,等. 镁合金耐腐蚀性的研究进展[J]. 热加工工艺, 2017, 14:44-47. HUO D X, LIANG J L, LI H, et al. Research progress on corrosion resistance of magnesium alloy[J]. Hot Working Technology, 2017, 14:44-47.
[6] 白志玲,秦丙克. 镁合金腐蚀性能研究进展[J]. 科技广场, 2017(3):168-170. BAI Z L, QIN B K. Research progress on the corrosion resistance of magnesium alloy[J]. Science Mosaic, 2017(3):168-170.
[7] 罗双,马正青. 合金元素Nd对AZ系镁合金牺牲阳极材料耐腐蚀和电化学性能的影响[J]. 材料保护, 2016, 49(8):12-19. LUO S, MA Z Q. Influence of Nd element on corrosion and electrochemical performance of AZ magnesium alloy as sacrificial anode material[J]. Materials Protection, 2016, 49(8):12-19.
[8] 张瑜. AE45稀土镁合金薄带的制备及其性能研究[D]. 鞍山:辽宁科技大学, 2018. ZHANG Y. Fabrication of AE45 magnesium alloy sheet and study on its properties[D]. Anshan:University of Science and Technology Liaoning, 2018.
[9] LIU M, SCHMUTZ P, UGGOWITZER P J, et al. The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys[J]. Corrosion Science, 2010, 52(11):3687-3701.
[10] 徐玉磊,张奎. 微量钇对压铸AZ91D镁合金组织及力学性能的影响[J]. 热加工工艺, 2018, 47(1):79-87. XU Y L, ZHANG K. Effect of minor yttrium on microstructure and mechanical properties of die casting AZ91D magnesium alloy[J]. Hot Working Technology, 2018, 47(1):79-87.
[11] ZHANG T, MENG G, SHAO Y, et al. Corrosion of hot extrusion AZ91 magnesium alloy. part Ⅱ:effect of rare earth element neodymium (Nd) on the corrosion behavior of extruded alloy[J]. Corrosion Science, 2011, 53(9):2934-2942.
[12] JIANG Q. Effect of the precipitated phases on corrosion behavior of Mg-Y-Nd ternary alloy[J]. International Journal of Electrochemical Science, 2017, 12:10199-10210.
[13] JIANG Q T, LI J R, MA X M, et al. The relationship between microstructure and corrosion behaviors of Mg-3Y-xNd alloys (x=0.5, 1.0, 1.5 wt%)[J]. Materials and Corrosion, 2016, 67(8):876-881.
[14] ZHU X, LIU Y, WANG Q, et al. Influence of sulfate-reducing bacteria on the corrosion residual strength of an AZ91D magnesium alloy[J]. Materials, 2014, 7(10):7118-7129.
[15] LIU Y, WANG Q, SONG Y, et al. A study on the corrosion behavior of Ce-modified cast AZ91 magnesium alloy in the presence of sulfate-reducing bacteria[J]. Journal of Alloys and Compounds, 2009, 473(1/2):550-556.
[16] LANDOULSI J, COOKSEY K E, DUPRES V. Review-interactions between diatoms and stainless steel:focus on biofouling and biocorrosion[J]. Biofouling, 2011, 27(10):1109-1124.
[17] LIU S, WANG Y, ZHANG D, et al. Electrochemical behavior of 316L stainless steel in f/2 culture solutions containing chlorella vulgaris[J]. International Journal of Electrochemical Science, 2013, 8(4):5330-5342.
[18] LIU H, XU D, DAO A Q, et al. Study of corrosion behavior and mechanism of carbon steel in the presence of chlorella vulgaris[J]. Corrosion Science, 2015, 101:84-93.
[19] 田丰,白秀琴,贺小燕,等. 海洋环境下金属材料微生物腐蚀研究进展[J]. 表面技术, 2018, 47(8):191-205. TIAN F, BAI X Q, HE X Y, et al. Research progress on microbiological induced corrosion of metallic materials under ocean environment[J]. Surface Technology, 2018, 47(8):191-205.
[20] JIA R, YANG D, XU D, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing, pseudomonas aeruginosa, biofilm[J]. Bioelectrochemistry, 2017, 118:38-46.
[21] 王蕾. 两株典型真菌对AZ31B镁合金的腐蚀行为影响研究[D]. 昆明:云南大学, 2015. WANG L. The effect of two typical fungi on the corrosion of AZ31B magnesium alloy[D]. Kunming:Yunnan University, 2015.
[22] 王强,刘耀辉,宋雨来,等. 基于固体培养基(SCM)的镁合金的微生物腐蚀[J]. 吉林大学学报(工学版), 2009, 39(3):604-607. WANG Q, LIU Y H, SONG Y L, et al. Microbiologically influenced corrosion of magnesium alloy based on solid culture medium[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(3):604-607.
[23] ZHANG T, SHAO Y, MENG G, et al. Corrosion of hot extrusion AZ91 magnesium alloy:Ⅰ -relation between the microstructure and corrosion behavior[J]. Corrosion Science, 2011, 53(5):1960-1968.
[24] JIA R, YANG D, XU J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing, pseudomonas aeruginosa, biofilm under organic carbon starvation[J]. Corrosion Science, 2017, 127:1-9.
[25] LI J, JIANG Q, SUN H, et al. Effect of heat treatment on corrosion behavior of AZ63 magnesium alloy in 3.5wt.% sodium chloride solution[J]. Corrosion Science, 2016, 111:288-301.
[26] EDUARDO L S, SVIATLANA V L, DI M, et al. The reduction of dissolved oxygen during magnesium corrosion[J]. Chemistry Open, 2018, 7(8):664-668.
[27] ZHANG P, XU D, LI Y, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the desulfovibrio vulgaris biofilm[J]. Bioelectrochemistry, 2015, 101:14-21.
[28] ATES M. Review study of electrochemical impedance spectroscopy and equivalent electrical circuits of conducting polymers on carbon surfaces[J]. Progress in Organic Coatings, 2011, 71(1):1-10.
[29] LINDSTR M R, JOHANSSON LG, THOMPSON GE, et al. Corrosion of magnesium in humid air[J]. Corrosion Science, 2004, 46(5):1141-1158.
[30] TUNOLD R, HOLTAN H, BERGE M B H, et al. The corrosion of magnesium in aqueous solution containing chloride ions[J]. Cheminform, 1977, 17(4):353-365.
[31] CHEN S, WANG P, ZHANG D. Corrosion behavior of copper under biofilm of sulfate-reducing bacteria[J]. Corrosion Science, 2014, 87:407-415.
[32] LI J, ZHANG B, WEI Q, et al. Electrochemical behavior of Mg-Al-Zn-In alloy as anode materials in 3.5wt.% NaCl solution[J]. Electrochimica Acta, 2017, 238:156-167.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[3] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[4] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[5] 刘玉项, 朱胜, 韩冰源. 金属镁电化学腐蚀阳极析氢行为研究进展[J]. 材料工程, 2020, 48(10): 17-27.
[6] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[7] 成明, 杨继凯, 郝志旭, 亢嘉琪, 王新, 王国政, 宦克为. TiO2基底对MoO3/TiO2复合薄膜电致变色性能的影响[J]. 材料工程, 2020, 48(10): 163-168.
[8] 呼世磊, 刘盼, 崔燚, 倪洁, 吕东风, 魏恒勇, 卜景龙. P123对多孔TiN粉体孔结构及电化学性能的影响[J]. 材料工程, 2019, 47(9): 93-100.
[9] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[10] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[11] 朱刚兵, 张得鹏, 钱俊娟. 二硫化钼基纳米材料在电化学传感/析氢领域的研究进展[J]. 材料工程, 2019, 47(6): 20-33.
[12] 袁晓静, 查柏林, 陈小虎, 禹志航, 王新军. WC-10Co-4Cr涂层在不同温度酸与NaCl溶液中的耐腐蚀性能[J]. 材料工程, 2019, 47(5): 63-71.
[13] 王赟, 胡军, 王甜甜, 郑茂盛. 曼尼希碱/钨酸钠复配对N80钢缓蚀的协同作用[J]. 材料工程, 2019, 47(2): 122-128.
[14] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[15] 张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn