Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (1): 136-143    DOI: 10.11868/j.issn.1001-4381.2018.001206
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
羟基磷灰石纳米棒的水热制备及其晶体生长机理研究
焦华, 赵康(), 石蕊, 马利宁, 卞铁荣, 汤玉斐
西安理工大学, 西安 710048
Hydrothermal synthesis and crystal growth mechanism of hydroxyapatite nanorods
Hua JIAO, Kang ZHAO(), Rui SHI, Li-ning MA, Tie-rong BIAN, Yu-fei TANG
Xi'an University of Technology, Xi'an 710048, China
全文: PDF(3467 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

以无水CaCl2和(NH42HPO4为原料,尿素为均相沉淀剂,十六烷基三甲基溴化铵(CTAB)为模板剂,利用水热法制备了羟基磷灰石(HA)纳米棒。采用X射线衍射仪(XRD)、扫描电镜(SEM)和透射电镜(TEM)对产物的物相组成、微观形貌进行了表征。结果表明:通过改变反应温度和时间,可实现HA纳米形貌的可控微调。在120℃水热反应12 h可以制备出单晶密排六方结构HA纳米棒,其长约为0.5~1.0 μm,直径约为15~30 nm。并从晶体结构的角度详细研究了CTAB在合成纳米棒结构中所起的作用,并通过实验进行了验证。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦华
赵康
石蕊
马利宁
卞铁荣
汤玉斐
关键词 羟基磷灰石纳米棒水热法生长机理    
Abstract

Hydroxyapatite (HA) nanorods were synthesized by hydrothermal process using anhydrous CaCl2 and (NH4)2HPO4 as raw materials, urea was used as a homogeneous precipitation agent; hexadecyltrimethy ammonium bromide (CTAB) was used as a template agent. Phase composition and microstructure of the products were characterized via X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The results show that the morphologies of HA nanorods can be controllably fine-tuning by changing the reaction temperature and time. Hexagonal single crystal HA nanorods single structure can be obtained at 120℃ for hydrothermal 12 h, its length is about 0.5-1.0 μm, diameter is about 15-30 nm. Finally, the role of CTAB was studied by the formation process of nanorods crystalline structure in details, and verified by experiment.

Key wordshydroxyapatite    nanorod    hydrothermal method    growth mechanism
收稿日期: 2018-10-15      出版日期: 2020-01-09
中图分类号:  O611  
基金资助:国家自然科学基金资助项目(51372199);西安理工大学校博士启动基金项目(256081902)
通讯作者: 赵康     E-mail: kzhao@xaut.edu.cn
作者简介: 赵康(1963—), 男, 教授, 博士, 博士生导师, 主要从事生物材料的研究与制备等方面的研究工作, 联系地址:陕西省西安市金花南路5号西安理工大学(710048), E-mail:kzhao@xaut.edu.cn
引用本文:   
焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
Hua JIAO, Kang ZHAO, Rui SHI, Li-ning MA, Tie-rong BIAN, Yu-fei TANG. Hydrothermal synthesis and crystal growth mechanism of hydroxyapatite nanorods. Journal of Materials Engineering, 2020, 48(1): 136-143.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001206      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/136
Fig.1  不同反应温度下水热反应12 h所得产物的XRD图
Temperature/℃ I(002) I(211) I(002)/I(211)
90 32 88 0.363
120 152 180 0.844
140 56 108 0.519
180 58 94 0.617
Table 1  羟基磷灰石样品在不同温度90~180 ℃反应12 h的晶面指数和强度因子
Fig.2  不同水热温度下反应12h所得产物的SEM图
(a)90 ℃; (b)120 ℃; (c)140 ℃; (d)180 ℃
Fig.3  120 ℃水热下不同反应时间所得产物的XRD图
Time/h I(002) I(211) I(002)/I(211)
4 72 206 0.349
8 76 96 0.792
12 152 180 0.844
16 124 200 0.620
Table 2  羟基磷灰石样品在120 ℃下反应不同时间的晶面指数和晶面强度
Fig.4  120 ℃水热下不同反应时间所得产物的SEM照片
(a)4 h; (b)8 h; (c)12 h; (d)16 h
Fig.5  120 ℃, 12 h水热条件下所得产物的TEM(a),单根HA纳米棒的TEM和晶体模型(b),SAED图(c),HRTEM图(d)
Fig.6  120 ℃水热12 h所得产物的IR图
Fig.7  HA立体结构(a),CTAB结构图(b),HA晶体局部与CTA+结合示意图(c)
Fig.8  不加CTAB所得产物的SEM图(a)和XRD图(b)
1 AKRAM M , AHMED R , SHAKIR I , et al. Extracting hydroxyapatite and its precursors from natural resources[J]. Journal of Materials Science, 2014, 49 (4): 1461- 1475.
doi: 10.1007/s10853-013-7864-x
2 张平生, 辛勇, 曹传亮, 等. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47 (7): 64- 70.
2 ZHANG P S , XIN Y , CAO C L , et al. Preparation and properties of polycaprolactone porous bone scaffold modified with chitosan/hydroxyapatite on the surface[J]. Journal of Materials Engineering, 2019, 47 (7): 64- 70.
3 CRANE G M , ISHAUG S L , MIKOS A G . Bone tissue engineering[J]. Nature Medicine, 1995, 1 (12): 1322- 1326.
doi: 10.1038/nm1295-1322
4 JOHNSON A J W , HERSCHLER B A . A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair[J]. Acta Biomaterialia, 2011, 7 (1): 16- 30.
doi: 10.1016/j.actbio.2010.07.012
5 JR D L W , EINHORN T A , KOVAL K , et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery[J]. Journal of Bone and Joint Surgery-American Volume, 2007, 89 (3): 649- 658.
doi: 10.2106/00004623-200703000-00026
6 张欣, 孙红. 纳米羟基磷灰石及其复合物修复骨缺损的研究与应用[J]. 中国组织工程研究, 2012, 16 (34): 6403- 6406.
6 ZHANG X , SUN H . Nano-hydroxyapatite and its compound in repairing bone defects[J]. Chinese Journal of Tissue Engineering Research, 2012, 16 (34): 6403- 6406.
7 STOJANOVIC' Z S , IGNJATOVIC' N , WU V , et al. Hydrothermally processed 1D hydroxyapatite: mechanism of formation and biocompatibility studies[J]. Materials Science & Engineering:C, 2016, 68 (1): 746- 757.
8 ITO H , OAKI Y , IMAI H . Selective synthesis of various nanoscale morphologies of hydroxyapatite various an intermediate phase[J]. Crystal Growth & Design, 2008, 8 (3): 1055- 1059.
9 NEIRA I S , KOLEN'KO Y V , LEBEDEV O I , et al. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis[J]. Crystal Growth & Design, 2009, 9 (1): 466- 474.
10 ZHANG C M , YANG J , QUAN Z W , et al. Hydroxyapatite nano and microcrystals with multiform morphologies:controllable synthesis and luminescence properties[J]. Crystal Growth & Design, 2009, 9 (6): 2725- 2733.
11 GUO Y P , YAO Y B , NING C Q , et al. Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method[J]. Materials Letters, 2011, 65 (14): 2205- 2208.
doi: 10.1016/j.matlet.2011.04.057
12 ZHANG L , ZHU S , HAN Y , et al. Formation and bioactivity of HA nanorods on micro-arc oxidized zirconium[J]. Materials Science & Engineering:C, 2014, 43 (8): 86- 91.
13 KUMAR G S , THAMIZHAVEL A , GIRIJA E K . Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications[J]. Materials Letters, 2012, 76 (6): 198- 200.
14 SHAVANDI A , BEKHITA E D , AZAM A , et al. Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method[J]. Materials Chemistry and Physics, 2015, 149/150 (1): 607- 616.
15 POINERN G E , BRUNDAVANAM R K , MONDINOS N , et al. Synthesis and characterization of nanohydroxyapatite using an ultrasound assisted method[J]. Ultrasonics Sonochemistry, 2009, 16 (4): 469- 474.
doi: 10.1016/j.ultsonch.2009.01.007
16 KOUTSOPOULOS S . Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods[J]. Journal of Biomedical Materials Research, 2002, 62 (4): 600- 612.
doi: 10.1002/jbm.10280
17 KANCHANA P , SEKAR C . Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles[J]. Spectrochimica Acta Part:A, 2015, 137 (2): 58- 65.
18 WEI D Q , ZHOU Y , YANG C H . Structure, cell response and biomimetic apatite induction of gradient TiO2-based/nano-scale hydrophilic amorphous titanium oxide containing Ca composite coatings before and after crystallization[J]. Colloids and Surfaces:B, 2009, 74 (1): 230- 237.
doi: 10.1016/j.colsurfb.2009.07.025
19 RULIS P , YAO H Z , OUYANG L Z , et al. Electronic structure, bonding, charge distribution, and X-ray absorption spectra of the (001) surfaces of fluorapatite and hydroxyapatite from first principles[J]. Physical Review:B, 2007, 76 (24): 5410- 5414.
20 ZHAO W L , XU Z J , YANG Y , et al. Surface energetics of the hydroxyapatite nanocrystal-water interface: a molecular dynamics study[J]. Langmuir, 2014, 30 (44): 13283- 13292.
doi: 10.1021/la503158p
21 LI Y , TJANDRA W , TAM K C . Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates[J]. Materials Research Bulletin, 2008, 43 (8/9): 2318- 2326.
22 卢惠娟, 陈冲, 郭宏涛, 等. 无探针紫外光谱法测定CTAB的第二临界胶束浓度[J]. 化学学报, 2006, 64 (24): 2437- 2441.
doi: 10.3321/j.issn:0567-7351.2006.24.009
22 LU H J , CHEN C , GUO H T , et al. Determination of the second critical micelle concentration of CTAB by UV spectra without probe[J]. Acta Chimica Sinica, 2006, 64 (24): 2437- 2441.
doi: 10.3321/j.issn:0567-7351.2006.24.009
[1] 倪航, 刘万能, 柯尊洁, 田玉, 朱小龙, 郑广. MgCo2O4海胆状电极材料的制备及其电化学性能[J]. 材料工程, 2022, 50(8): 143-152.
[2] 宋永智, 毕松, 侯根良, 李浩, 赵彦凯, 刘朝辉. MnO2纳米棒的吸波性能及其超构表面设计[J]. 材料工程, 2022, 50(7): 110-118.
[3] 施琦, 丁龙, 龙红明, 王毅璠, 春铁军. 纳米形貌对Ce-V催化剂降解氯苯活性影响[J]. 材料工程, 2021, 49(8): 162-168.
[4] 谌建平, 张旭, 林东宝, 潘海波, 沈水发. 纳米花/棒SnO2的水热法制备及其气敏性[J]. 材料工程, 2021, 49(6): 164-169.
[5] 张勇, 翟光美, 郑露露, 高领伟, 陈青, 任锦涛, 郁军, 许并社. 籽晶层对氧化锡纳米棒生长质量及其钙钛矿太阳能电池性能的影响[J]. 材料工程, 2021, 49(10): 55-62.
[6] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[7] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[10] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[11] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[12] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[13] 王朴, 杜继涛. 电流密度对水热电化学沉积HA涂层性能的影响[J]. 材料工程, 2018, 46(4): 58-65.
[14] 韩祥祥, 于思荣, 李好. 锌基体疏液表面的制备及润湿行为[J]. 材料工程, 2018, 46(3): 67-73.
[15] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn