Hydroxyapatite (HA) nanorods were synthesized by hydrothermal process using anhydrous CaCl2 and (NH4)2HPO4 as raw materials, urea was used as a homogeneous precipitation agent; hexadecyltrimethy ammonium bromide (CTAB) was used as a template agent. Phase composition and microstructure of the products were characterized via X-ray diffractometer (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The results show that the morphologies of HA nanorods can be controllably fine-tuning by changing the reaction temperature and time. Hexagonal single crystal HA nanorods single structure can be obtained at 120℃ for hydrothermal 12 h, its length is about 0.5-1.0 μm, diameter is about 15-30 nm. Finally, the role of CTAB was studied by the formation process of nanorods crystalline structure in details, and verified by experiment.
AKRAM M , AHMED R , SHAKIR I , et al. Extracting hydroxyapatite and its precursors from natural resources[J]. Journal of Materials Science, 2014, 49 (4): 1461- 1475.
doi: 10.1007/s10853-013-7864-x
ZHANG P S , XIN Y , CAO C L , et al. Preparation and properties of polycaprolactone porous bone scaffold modified with chitosan/hydroxyapatite on the surface[J]. Journal of Materials Engineering, 2019, 47 (7): 64- 70.
3
CRANE G M , ISHAUG S L , MIKOS A G . Bone tissue engineering[J]. Nature Medicine, 1995, 1 (12): 1322- 1326.
doi: 10.1038/nm1295-1322
4
JOHNSON A J W , HERSCHLER B A . A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair[J]. Acta Biomaterialia, 2011, 7 (1): 16- 30.
doi: 10.1016/j.actbio.2010.07.012
5
JR D L W , EINHORN T A , KOVAL K , et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery[J]. Journal of Bone and Joint Surgery-American Volume, 2007, 89 (3): 649- 658.
doi: 10.2106/00004623-200703000-00026
ZHANG X , SUN H . Nano-hydroxyapatite and its compound in repairing bone defects[J]. Chinese Journal of Tissue Engineering Research, 2012, 16 (34): 6403- 6406.
7
STOJANOVIC' Z S , IGNJATOVIC' N , WU V , et al. Hydrothermally processed 1D hydroxyapatite: mechanism of formation and biocompatibility studies[J]. Materials Science & Engineering:C, 2016, 68 (1): 746- 757.
8
ITO H , OAKI Y , IMAI H . Selective synthesis of various nanoscale morphologies of hydroxyapatite various an intermediate phase[J]. Crystal Growth & Design, 2008, 8 (3): 1055- 1059.
9
NEIRA I S , KOLEN'KO Y V , LEBEDEV O I , et al. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis[J]. Crystal Growth & Design, 2009, 9 (1): 466- 474.
10
ZHANG C M , YANG J , QUAN Z W , et al. Hydroxyapatite nano and microcrystals with multiform morphologies:controllable synthesis and luminescence properties[J]. Crystal Growth & Design, 2009, 9 (6): 2725- 2733.
11
GUO Y P , YAO Y B , NING C Q , et al. Fabrication of mesoporous carbonated hydroxyapatite microspheres by hydrothermal method[J]. Materials Letters, 2011, 65 (14): 2205- 2208.
doi: 10.1016/j.matlet.2011.04.057
12
ZHANG L , ZHU S , HAN Y , et al. Formation and bioactivity of HA nanorods on micro-arc oxidized zirconium[J]. Materials Science & Engineering:C, 2014, 43 (8): 86- 91.
13
KUMAR G S , THAMIZHAVEL A , GIRIJA E K . Microwave conversion of eggshells into flower-like hydroxyapatite nanostructure for biomedical applications[J]. Materials Letters, 2012, 76 (6): 198- 200.
14
SHAVANDI A , BEKHITA E D , AZAM A , et al. Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method[J]. Materials Chemistry and Physics, 2015, 149/150 (1): 607- 616.
15
POINERN G E , BRUNDAVANAM R K , MONDINOS N , et al. Synthesis and characterization of nanohydroxyapatite using an ultrasound assisted method[J]. Ultrasonics Sonochemistry, 2009, 16 (4): 469- 474.
doi: 10.1016/j.ultsonch.2009.01.007
16
KOUTSOPOULOS S . Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods[J]. Journal of Biomedical Materials Research, 2002, 62 (4): 600- 612.
doi: 10.1002/jbm.10280
17
KANCHANA P , SEKAR C . Development of electrochemical folic acid sensor based on hydroxyapatite nanoparticles[J]. Spectrochimica Acta Part:A, 2015, 137 (2): 58- 65.
18
WEI D Q , ZHOU Y , YANG C H . Structure, cell response and biomimetic apatite induction of gradient TiO2-based/nano-scale hydrophilic amorphous titanium oxide containing Ca composite coatings before and after crystallization[J]. Colloids and Surfaces:B, 2009, 74 (1): 230- 237.
doi: 10.1016/j.colsurfb.2009.07.025
19
RULIS P , YAO H Z , OUYANG L Z , et al. Electronic structure, bonding, charge distribution, and X-ray absorption spectra of the (001) surfaces of fluorapatite and hydroxyapatite from first principles[J]. Physical Review:B, 2007, 76 (24): 5410- 5414.
20
ZHAO W L , XU Z J , YANG Y , et al. Surface energetics of the hydroxyapatite nanocrystal-water interface: a molecular dynamics study[J]. Langmuir, 2014, 30 (44): 13283- 13292.
doi: 10.1021/la503158p
21
LI Y , TJANDRA W , TAM K C . Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates[J]. Materials Research Bulletin, 2008, 43 (8/9): 2318- 2326.
LU H J , CHEN C , GUO H T , et al. Determination of the second critical micelle concentration of CTAB by UV spectra without probe[J]. Acta Chimica Sinica, 2006, 64 (24): 2437- 2441.
doi: 10.3321/j.issn:0567-7351.2006.24.009