Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (2): 100-107    DOI: 10.11868/j.issn.1001-4381.2019.000259
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用
刘继涛1,2, 钏定泽1, 杨泽斌1, 陈希亮1, 颜廷亭1, 陈庆华1,*()
1 昆明理工大学 材料科学与工程学院, 昆明 650093
2 云南白药集团股份有限公司, 昆明 650500
Synthesis and characterization of amino acids/hydroxyapatite composites for in vitro remi-neralization of acid-etched bovine enamel
Ji-tao LIU1,2, Ding-ze CHUAN1, Ze-bin YANG1, Xi-liang CHEN1, Ting-ting YAN1, Qing-hua CHEN1,*()
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Yunnan Baiyao Group Co., Ltd., Kunming 650500, China
全文: PDF(3878 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在不同浓度丝氨酸(Ser),天冬氨酸(Asp)和谷氨酸(Glu)的组合下制备氨基酸/羟基磷灰石(AA/HAP)复合材料。通过红外光谱仪、X射线衍射仪和透射电镜对复合材料进行表征,评估复合材料对酸蚀牛牙釉质体外再矿化的效果。结果表明:氨基酸(AA)会干扰羟基磷灰石(HAP)晶面的生长,使HAP的溶解度增加和晶体结构有序性降低。X射线衍射图及透射电镜图的结果显示,AA对HAP的[100]晶向具有显著的抑制作用,且与不含AA的HAP相比,AA修饰的HAP复合材料具有细化的晶粒尺寸。通过CCK-8法评估了材料的细胞毒性,结果表明AA/HAP复合材料的相对细胞活性优于HAP。场发射扫描电镜图表明不含AA的HAP材料和两组不同浓度AA改性HAP材料均可修复酸蚀牛牙釉质的表面龋损。而在Ser,Asp和Glu均为10 mmol·L-1条件下制备的AA/HAP可在牛牙釉质的深层再矿化中生成厚度约为22 μm的致密再矿化层,并获得了最佳的表面显微硬度恢复效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘继涛
钏定泽
杨泽斌
陈希亮
颜廷亭
陈庆华
关键词 氨基酸羟基磷灰石复合材料生物相容性牙釉质再矿化    
Abstract

Amino acids modified hydroxyapatite (AA/HAP) composites were synthesized in the presence of different concentrations of serine (Ser), aspartic acid (Asp) and glutamic acid (Glu). The composites were characterized by Fourier transform infrared spectrometer, X-ray diffractometer (XRD) and transmission electron microscope (TEM), and were evaluated in the in vitro remineralization of acid-etched bovine enamel. The results show that amino acids (AA)can interfere with the growth of HAP crystal plane, resulting in the increase of the solubility and decrease of the ordered structure of the HAP crystals. XRD patterns and TEM analysis show that AA has a significant inhibitory effect on the [100] crystalline direction of HAP.Meanwhile, the HAP composites modified by AA have refined crystalline size when compared with the HAP without AA. The cytotoxicity of the materials was evaluated by CCK-8 assay and the results show that the relative cell activity of AA/HAP composites is better than the HAP. Field emission scanning electron microscope images show that the HAP without amino acids and the HAP modified with two different concentrations of amino acids both can repair the surface lesions of bovine enamel. While only the AA/HAP synthesized in the presence of 10 mmol·L-1 Ser, Asp and Glu generates a dense remineralization layer with a thickness of approximately 22 μm in the subsurface restoration, and obtains the best surface microhardness recovering.

Key wordsamino acid    hydroxyapatite    composite    biocompatibility    enamel    remineralization
收稿日期: 2019-03-21      出版日期: 2020-03-03
中图分类号:  R318.08  
通讯作者: 陈庆华     E-mail: 847501438@qq.com
作者简介: 陈庆华(1962-), 男, 教授, 博士, 博士生导师, 研究方向为生物医用材料, 联系地址:云南省昆明市五华区学府路253号昆明理工大学材料科学与工程学院大楼635(650093), E-mail:847501438@qq.com
引用本文:   
刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
Ji-tao LIU, Ding-ze CHUAN, Ze-bin YANG, Xi-liang CHEN, Ting-ting YAN, Qing-hua CHEN. Synthesis and characterization of amino acids/hydroxyapatite composites for in vitro remi-neralization of acid-etched bovine enamel. Journal of Materials Engineering, 2020, 48(2): 100-107.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000259      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/100
Composite Ser/
(mmol·L-1)
Asp/
(mmol·L-1)
Glu/
(mmol·L-1)
HAP-0 0 0 0
HAP-5 5 5 5
HAP-10 10 10 10
Table 1  Ser,Asp和Glu的浓度
Fig.1  HAP-0,HAP-5和HAP-10的FTIR图
Fig.2  HAP-0,HAP-5和HAP-10的XRD图
Composite D/nm
(002) (112) (202)
HAP-0 21.05 9.13 12.39
HAP-5 18.40 10.14 16.47
HAP-10 22.33 8.55 19.39
Table 2  根据XRD数据计算的晶粒尺寸
Fig.3  再矿化溶液上清液中Ca2+浓度
Fig.4  复合材料的TEM(1)与HRTEM(2)图
(a)HAP-0;(b)HAP-5;(c)HAP-10
Fig.5  复合材料对细胞相对活性的影响
Fig.6  牙釉质表面(1)和剖面(2)FESEM图
(a)抛光牙釉质;(b)酸蚀牙釉质
Fig.7  再矿化后牙釉质表面(1)和剖面(2)FESEM图
(a)空白组;(b)HAP-0;(c)HAP-5;(d)HAP-10
Fig.8  再矿化前后SMH值对比图
1 李小科, 王进防, 常江. 牙釉质再矿化综述[J]. 口腔护理用品工业, 2017, 27 (2): 18- 26.
1 LI X K , WANG J F , CHANG J , et al. The remineralisation of enamel: a review of the literature[J]. Oral Care Industry, 2017, 27 (2): 18- 26.
2 HE L H , SWAIN M V . Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1 (1): 18- 29.
doi: 10.1016/j.jmbbm.2007.05.001
3 FAN Y , NELSON J R , ALVAREZ J R , et al. Amelogenin-assisted ex vivo remineralization of human enamel: effects of supersaturation degree and fluoride concentration[J]. Acta Biomaterialia, 2011, 7 (5): 2293- 2302.
doi: 10.1016/j.actbio.2011.01.028
4 LI Q L , NING T Y , CAO Y , et al. A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel[J]. BMC Biotechnology, 2014, 14 (1): 1- 11.
doi: 10.1186/1472-6750-14-1
5 LE N E , KWAK S Y , WIEDEMANNBIDLACK F B , et al. Leucine-rich amelogenin peptides regulate mineralization in vitro[J]. Journal of Dental Research, 2011, 90 (9): 1091- 1097.
doi: 10.1177/0022034511411301
6 WU D , YANG J , LI J , et al. Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel[J]. Biomaterials, 2013, 34 (21): 5036- 5047.
doi: 10.1016/j.biomaterials.2013.03.053
7 毛文文, 茹江英. 羟基磷灰石类陶瓷在骨组织工程中的研究与更广泛应用[J]. 中国组织工程研究, 2018, 22 (30): 4855- 4863.
7 MAO W W , RU J Y . Hydroxyapatite ceramics in bone tissue engineering: research and extensive applications[J]. Chinese Journal of Tissue Engineering Research, 2018, 22 (30): 4855- 4863.
8 LELLI M , PUTIGNANO A , MARCHETTI M , et al. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study[J]. Frontiers in Physiology, 2014, 5, 1- 7.
9 VENEGAS S C , PALACIOS J M , APELLA M C , et al. Calcium modulates interactions between bacteria and hydroxyapatite[J]. Journal of Dental Research, 2006, 85 (12): 1124- 1128.
doi: 10.1177/154405910608501211
10 DUVERGER O , BENIASH E , MORASSO M I . Keratins as components of the enamel organic matrix[J]. Matrix Biology, 2016, 52/54, 260- 265.
doi: 10.1016/j.matbio.2015.12.007
11 WIEDEMANN-BIDLACK F B , KWAK S Y , BENIASH E , et al. Effects of phosphorylation on the self-assembly of native full-length porcine amelogenin and its regulation of calcium phosphate formation in vitro[J]. Journal of Structural Biology, 2011, 173 (2): 250- 260.
doi: 10.1016/j.jsb.2010.11.006
12 LI L , MAO C , WANG J , et al. Bio-inspired enamel repair via glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics[J]. Advanced Materials, 2011, 23 (40): 4695- 4701.
doi: 10.1002/adma.201102773
13 WU X , ZHAO X , LI Y , et al. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel two-step method[J]. Materials Science and Engineering: C, 2015, 54, 150- 157.
doi: 10.1016/j.msec.2015.05.006
14 FAN Z J , WANG J Q , WANG Z F , et al. One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering[J]. Carbon, 2014, 66 (1): 407- 416.
15 MATSUMOTO T , OKAZAKI M , INOUE M , et al. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid[J]. Biomaterials, 2002, 23 (10): 2241- 2247.
doi: 10.1016/S0142-9612(01)00358-1
16 GONZALEZ-MCQUIRE R , CHANE-CHING J Y , VIGNAUD E , et al. Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods[J]. Journal of Materials Chemistry, 2004, 14 (14): 2277- 2281.
doi: 10.1039/b400317a
17 JACK K S , VIZCARRA T G , TRAU M . Characterization and surface properties of amino-acid-modified carbonate-containing hydroxyapatite particles[J]. Langmuir, 2007, 23 (24): 12233- 12242.
doi: 10.1021/la701848c
18 BOANINI E , TORRICELLI P , GAZZANO M , et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells[J]. Biomaterials, 2006, 27 (25): 4428- 4433.
doi: 10.1016/j.biomaterials.2006.04.019
19 PARK S Y , KIM K I , PARK S P , et al. Aspartic acid-assisted synthesis of multifunctional strontium-substituted hydroxyapatite microspheres[J]. Crystal Growth & Design, 2016, 16 (8): 4318- 4326.
20 MATSUMOTO T , OKAZAKI M , INOUE M , et al. Role of acidic amino acid for regulating hydroxyapatite crystal growth[J]. Dental Materials Journal, 2006, 25 (2): 360- 364.
doi: 10.4012/dmj.25.360
21 WHITE S N , LUO W , PAINE M L , et al. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel[J]. Journal of Dental Research, 2001, 80 (1): 321- 326.
doi: 10.1177/00220345010800010501
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[3] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[4] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[5] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[6] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[7] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[8] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[9] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[10] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 于永涛, 刘元军. 原位聚合法制备铁氧体/聚苯胺吸波复合材料的研究进展[J]. 材料工程, 2022, 50(5): 90-99.
[13] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
[14] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[15] 任美娟, 王淼, 吴芳辉, 贾虎, 叶明富, 文国强. 氮掺杂多孔碳负载铜钴纳米复合材料的制备及其电催化性能[J]. 材料工程, 2022, 50(4): 104-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn