Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (2): 114-122    DOI: 10.11868/j.issn.1001-4381.2018.001277
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
GH4169合金楔横轧加工过程中动态再结晶及织构演变
甘洪岩1,2, 程明1, 宋鸿武1, 陈岩1, 张士宏1,*(), VladimirPetrenko3
1 中国科学院金属研究所, 沈阳 110016
2 中国科学技术大学 材料科学与工程学院, 沈阳 110016
3 白俄罗斯科学院 物理技术研究所, 明斯克 220141, 白俄罗斯
Dynamic recrystallization and texture evolution of GH4169 alloy during cross wedge rolling
Hong-yan GAN1,2, Ming CHENG1, Hong-wu SONG1, Yan CHEN1, Shi-hong ZHANG1,*(), Petrenko Vladimir3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Physical Technical Institute, National Academy of Sciences of Belarus, Minsk 220141, Belarus
全文: PDF(8781 KB)   HTML ( 3 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为研究GH4169合金楔横轧加工过程中动态再结晶及织构演变规律,采用金相显微镜(OM)和电子背散射衍射(EBSD)对30%,50%两种断面收缩率下GH4169合金楔横轧件表层与心部的微观组织、晶体取向及织构进行分析。结果表明:GH4169合金楔横轧加工过程中,随着动态再结晶的发生,晶体取向逐渐变得随机化分布;轧制表层大角度晶界数量较轧件心部多,轧件表层织构强度变化不大,心部织构强度明显增强;经过楔横轧变形后织构发生转动,原始态织构类型为{001}〈1${\rm{\bar 1}}$0〉,{111}〈1${\rm{\bar 1}}$0〉,{111}〈0${\rm{\bar 1}}$1〉,轧制后主要织构类型为{001}〈0${\rm{\bar 1}}$0〉,{112}〈1${\rm{\bar 1}}$0〉,{110}〈1${\rm{\bar 1}}$1〉,{110}〈1${\rm{\bar 1}}$2〉;GH4169合金楔横轧件动态再结晶及织构演变规律是由楔横轧特殊变形特点决定的。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘洪岩
程明
宋鸿武
陈岩
张士宏
VladimirPetrenko
关键词 GH4169合金楔横轧动态再结晶织构    
Abstract

To study the dynamic recrystallization and texture evolution of GH4169 alloy during the cross wedge rolling processing, the microstructure, crystal orientation and texture in the surface and core of the GH4169 alloy with the area reduction of 30% and 50% were analyzed by the metallographic microscope (OM) and electron backscatter diffraction (EBSD), respectively.The results show that the crystal orientation gradually tends to be random with the occurrence of dynamic recrystallization during the cross wedge rolling process of GH4169 alloy. There are more high-angle grain boundaries in the rolled surface than those in the core. No evident change of the texture intensity in the rolled surface can be observed, while the core texture intensity increases obviously. The textures have rotated after the cross wedge rolling and the previous types of {001}〈1${\rm{\bar 1}}$0〉, {111}〈1${\rm{\bar 1}}$0〉, {111}〈0${\rm{\bar 1}}$1〉 change to the types of {001}〈0${\rm{\bar 1}}$0〉, {112}〈1${\rm{\bar 1}}$0〉, {110}〈1${\rm{\bar 1}}$1〉, {110}〈1${\rm{\bar 1}}$2〉. The dynamic recrystallization and texture evolution of GH4169 alloy are dominated by the special deformation characteristics of the cross wedge rolling.

Key wordsGH4169 alloy    cross wedge rolling    dynamic recrystallization    texture
收稿日期: 2018-11-02      出版日期: 2020-03-03
中图分类号:  TG337.1  
基金资助:国家自然科学青年基金(51505240)
通讯作者: 张士宏     E-mail: shzhang@imr.ac.cn
作者简介: 张士宏(1962-), 男, 研究员, 博士, 研究方向为塑性加工先进技术, 联系地址:辽宁省沈阳市沈河区文化路72号中国科学院金属研究所(110016), E-mail:shzhang@imr.ac.cn
引用本文:   
甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, VladimirPetrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
Hong-yan GAN, Ming CHENG, Hong-wu SONG, Yan CHEN, Shi-hong ZHANG, Petrenko Vladimir. Dynamic recrystallization and texture evolution of GH4169 alloy during cross wedge rolling. Journal of Materials Engineering, 2020, 48(2): 114-122.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001277      或      http://jme.biam.ac.cn/CN/Y2020/V48/I2/114
C Ni Cr Nb Mo Ti Al B Si Mn Co Fe
0.027 53.74 17.58 5.35 3.01 0.98 0.52 0.0025 0.009 0.07 0.40 Bal
Table 1  实验用GH4169合金化学成分(质量分数/%)
Temperature/℃ Roll speed/(r·min-1) Roll diameter/mm Forming angle/(°) Spreading angle/(°) Area reduction/%
1000 12 630 28 5 30, 50
Table 2  实验过程中主要工艺参数
Fig.1  GH4169合金微观组织
(a)原棒料;(b)30%断面收缩率轧件表层;(c)30%断面收缩率轧件心部;(d)50%断面收缩率轧件表层;(e)50%断面收缩率轧件心部
Fig.2  GH4169合金楔横轧件动态再结晶
(a)30%断面收缩率表层;(b)30%断面收缩率心部;(c)50%断面收缩率表层;(d)50%断面收缩率心部
Fig.3  GH4169合金楔横轧件动态再结晶体积分数
Fig.4  楔横轧模型
Heat transfer coefficient/ (W·m-2·K-1) Convective heat transfer coefficient/(W·m-2·K-1) Thermal conversion coefficient Friction factor Trellis partition number
1311.4 200 0.9 2 80000
Table 3  楔横轧GH4169合金热力耦合模拟参数
Fig.5  等效应变随时间变化规律
(a)断面收缩率30%;(b)断面收缩率50%
Fig.6  楔横轧GH4169合金全Euler图
(a)原棒料;(b)30%断面收缩率轧件表层;(c)30%断面收缩率轧件心部;(d)50%断面收缩率轧件表层;(e)50%断面收缩率轧件心部
Fig.7  GH4169合金楔横轧件极图
(a)原棒料;(b)30%断面收缩率轧件表层;(c)30%断面收缩率轧件心部;(d)50%断面收缩率轧件表层;(e)50%断面收缩率轧件心部
Fig.8  GH4169合金楔横轧件φ2=45°三维取向图(ODF)及主要织构类型
(a)原棒料;(b)30%断面收缩率轧件表层;(c)30%断面收缩率轧件心部;(d)50%断面收缩率轧件表层;(e)50%断面收缩率轧件心部
Fig.9  GH4169合金楔横轧件取向差分布
(a)原棒料;(b)30%断面收缩率轧件表层;(c)30%断面收缩率轧件心部;(d)50%断面收缩率轧件表层;(e)50%断面收缩率轧件心部;(f)取向差角分布
Fig.10  楔横轧过程中轧件受力状态分析
1 刘臣, 田素贵, 王欣, 等. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45 (6): 43- 48.
1 LIU C , TIAN S G , WANG X , et al. Microstructure and creep property of a GH4169 nickel-based superalloy[J]. Journal of Materials Engineering, 2017, 45 (6): 43- 48.
2 韩大尉, 孙文儒, 于连旭, 等. Mo含量对IN718合金组织和力学性能的影响[J]. 航空材料学报, 2018, 38 (4): 64- 74.
2 HAN D W , SUN W R , YU L X , et al. Effect of Mo content on microstructure and mechanical properties of IN718 alloy[J]. Journal of Aeronautical Materials, 2018, 38 (4): 64- 74.
3 ZHANG H Y , ZHANG S H , CHENG M , et al. Deformation characteristics of δ phase in the delta-processed Inconel 718 alloy[J]. Materials Characterization, 2010, 61 (1): 49- 53.
doi: 10.1016/j.matchar.2009.10.003
4 MEI Y P , LIU Y C , LIU C X , et al. Effects of cold rolling on the precipitation kinetics and the morphology evolution of intermediate phases in Inconel 718 alloy[J]. Journal of Alloys and Compounds, 2015, 649, 949- 960.
doi: 10.1016/j.jallcom.2015.07.149
5 WANG Y , ZHEN L , SHAO W Z , et al. Hot working characteristics and dynamic recrystallization of delta-processed superalloy 718[J]. Journal of Alloys and Compounds, 2009, 474 (1/2): 341- 346.
6 LIN Y C , WU X Y , CHEN X M , et al. EBSD study of a hot deformed nickel-based superalloy[J]. Journal of Alloys and Compounds, 2015, 640, 101- 113.
doi: 10.1016/j.jallcom.2015.04.008
7 SUI F L , ZUO Y , LIU X H , et al. Microstructure analysis on IN 718 alloy round rod by FEM in the hot continuous rolling process[J]. Applied Mathematical Modelling, 2013, 37 (20/21): 8776- 8784.
8 叶能永.冷轧变形诱导GH4169合金再结晶和相析出机理及其应用[D].沈阳: 中国科学院大学, 2016.
8 YE N Y.Research on the mechanism and application of recrystallization and phase precipitation of GH4169 alloy induced by cold rolling[D].Shenyang: University of Chinese Academy of Sciences, 2016.
9 HUO Y M , BAI Q , WANG B Y . A new application of unified constitutive equations for cross wedge rolling of a high-speed railway axle steel[J]. Journal of Materials Processing Technology, 2015, 223, 274- 283.
doi: 10.1016/j.jmatprotec.2015.04.011
10 URANKAR S , LOVELL M , MORROW C , et al. Development of a critical friction model for cross wedge rolling hollow shafts[J]. Journal of Materials Processing Technology, 2006, 177 (1/3): 539- 544.
11 PENG W F , ZHENG S H , CHIU Y J , et al. Multi-wedge cross wedge rolling process of 42CrMo4 large and long hollow shaft[J]. Rare Metal Materials and Engineering, 2016, 45 (4): 836- 842.
doi: 10.1016/S1875-5372(16)30084-4
12 赵培峰.6061铝合金楔横轧变形研究[D].北京: 机械科学研究总院, 2006.
12 ZHAO P F.Study of deformation of 6061 aluminium alloy in the process of cross wedge rolling[D].Beijing: China Academy of Machinery Science and Technology, 2006.
13 ZHANG N , WANG B Y , LIN J G . Effect of cross wedge rolling on the microstructure of GH4169 alloy[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19 (9): 836- 842.
doi: 10.1007/s12613-012-0636-9
14 张宁, 王宝雨. 楔横轧不同变形阶段的微观组织演变分析[J]. 塑性工程学报, 2012, 19 (1): 16- 20.
doi: 10.3969/j.issn.1007-2012.2012.01.004
14 ZHANG N , WANG B Y . Analysis of microstructural evolution during different stages of cross wedge rolling[J]. Journal of Plasticity Engineering, 2012, 19 (1): 16- 20.
doi: 10.3969/j.issn.1007-2012.2012.01.004
15 张宁, 王宝雨, 胡正寰. 楔横轧成形GH4169合金的热力耦合数值模拟[J]. 北京科技大学学报, 2011, 33 (11): 1396- 1401.
15 ZHANG N , WANG B Y , HU Z H . Thermomechanical coupled simulation of GH4169 alloy for cross wedge rolling[J]. Journal of University of Science and Technology Beijing, 2011, 33 (11): 1396- 1401.
16 CHEN Y , GAN H Y , ZHANG S H , et al. Analysis of deformation and internal defect in flat-wedge cross-wedge rolling of GH4169 superalloy[J]. Materials Science Forum, 2016, 879, 324- 329.
doi: 10.4028/www.scientific.net/MSF.879.324
17 朱德彪, 束学道. 工艺参数对楔横轧GH4169合金轴类件力能参数的影响[J]. 塑性工程学报, 2018, 25 (1): 52- 59.
17 ZHU D B , SHU X D . Influence of process parameters on force and energy parameters of cross wedge rolling GH4169 alloy shaft parts[J]. Journal of Plasticity Engineering, 2018, 25 (1): 52- 59.
18 SIDOR J J , KESTENS L A I . Analytical description of rolling textures in face-centred-cubic metals[J]. Scripta Materialia, 2013, 68 (5): 273- 276.
doi: 10.1016/j.scriptamat.2012.10.039
19 HIRSCH J , LUCKE K . Mechanism of deformation and development of rolling texture in polycrystalline FCC metals[J]. Acta Metallurgica, 1988, 36 (11): 2863- 2927.
doi: 10.1016/0001-6160(88)90172-1
20 史庆南, 陈亮维, 王晓琪. 大塑性变形及材料微结构表征[M]. 北京: 科学出版社, 2016.
20 SHI Q N , CHEN L W , WANG X Q . Characterization of sever plastic deformation and microstructure of materials[M]. Beijing: Science Press, 2016.
21 HUANG K , LOGE R E . A review of dynamic recrystallization phenomena in metallic materials[J]. Materials & Design, 2016, 111, 548- 574.
22 朱怀沈, 聂义宏, 赵帅, 等. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46 (6): 80- 87.
22 ZHU H S , NIE Y H , ZHAO S , et al. Microstructure evolution and prediction of alloy 617 during hot deformation based on dynamic recrystallization[J]. Journal of Materials Engineering, 2018, 46 (6): 80- 87.
[1] 胡广, 赵英杰, 马胜国, 张团卫, 赵聃, 王志华. 考虑位错密度和损伤的NiCoCrFe高熵合金晶体塑性有限元分析[J]. 材料工程, 2022, 50(3): 60-68.
[2] 王格格, 李晓燕, 郭非, 张紫璇, 陈翠玉, 朱召渲, 胡怡. 高温多向异步轧制对LZ91镁锂合金组织和力学性能的影响[J]. 材料工程, 2022, 50(11): 92-100.
[3] 乔士宾, 何西扣, 刘敬杰, 赵德利, 刘正东. SA508Gr.4N钢热变形过程微观组织演变及流变应力模型[J]. 材料工程, 2021, 49(3): 67-77.
[4] 张连腾, 陈乐平, 徐勇, 袁源平. Mg-9Al-3Si-0.375Sr-0.78Y合金的热变形行为及本构模型[J]. 材料工程, 2021, 49(2): 88-96.
[5] 支盛兴, 李兴刚, 袁家伟, 李永军, 马鸣龙, 石国梁, 张奎. 挤压态AZ40镁合金热变形行为及热加工图分析[J]. 材料工程, 2021, 49(11): 136-146.
[6] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[7] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[8] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[9] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[10] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[11] 储双杰, 沈侃毅, 沙玉辉, 陈曦. 无取向硅钢形变储能取向依赖性及其对再结晶织构的影响[J]. 材料工程, 2019, 47(8): 147-153.
[12] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[13] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[14] 魏帅虎, 胡茂良, 吉泽升, 许红雨, 王晔. 多道次热挤压制备Al2O3/AZ31复合材料的微观组织与力学性能[J]. 材料工程, 2019, 47(12): 85-91.
[15] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn