Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 10-18    DOI: 10.11868/j.issn.1001-4381.2018.001432
  综述 本期目录 | 过刊浏览 | 高级检索 |
仿生材料在集水领域应用的研究现状
陈振1, 张增志1,2, 杜红梅1, 王晗1, 王立宁1, 丛中卉1, 吴浩平1
1. 中国矿业大学(北京)机电与信息工程学院, 北京 100083;
2. 中国矿业大学(北京)生态功能材料研究所, 北京 100083
Research and application status on biomimetic materials in the water harvesting area
CHEN Zhen1, ZHANG Zeng-zhi1,2, DU Hong-mei1, WANG Han1, WANG Li-ning1, CONG Zhong-hui1, WU Hao-ping1
1. School of Mechanical Electronic & Information Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China;
2. Research Institute of Ecological and Functional Material, China University of Mining and Technology(Beijing), Beijing 100083, China
全文: PDF(1902 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 目前,淡水资源紧缺已经成为一个全球性的难题,特别是在一些干旱和欠发达地区,问题更加严峻。在自然界中,许多生物能够从雾气中获得水分,这为开发新颖的功能性集水材料提供了灵感。最近,在实际应用和基础研究方面,仿生集水材料作为一个热门的课题越来越受到人们关注。本文总结了纳米布沙漠甲虫、仙人掌和蜘蛛丝的集水机理,并叙述了仿生材料的合成、功能和集水效率,以及最近几年仿生材料新的发展。最后,对仿生集水材料在制备和应用过程中存在的主要问题进行总结并对未来发展趋势进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈振
张增志
杜红梅
王晗
王立宁
丛中卉
吴浩平
关键词 沙漠甲虫仙人掌蜘蛛丝仿生材料集水效率    
Abstract:Nowadays,water shortage has become a severe issue all over the world, especially in some arid and undeveloped areas. In nature, many creatures can collect water from fog which can provide a source of inspiration to develop novel and functional water-collecting materials. Recently, as an increasingly hot research topic, bioinspired materials with water collection have captured vast scientific attentions into both practical applications and fundamental researches. In this paper, the mechanism of water collection of Namib desert beetle, cactus and spider silk was summarized, and the synthesis, function and water collection efficiency of corresponding biomimetic materials were described, as well as new developments in recent years. Finally, conclusions and outlook concerning the main problems and development trends of bionic water-collecting materials in the process of preparation and application were presented.
Key wordsdesert beetle    cactus    spider silk    biomimetic material    water collection efficiency
收稿日期: 2018-12-15      出版日期: 2020-03-18
中图分类号:  TB34  
通讯作者: 张增志(1965-),男,教授,博士,主要从事生态功能材料的研究与开发,联系地址:北京市海淀区学院路丁11号中国矿业大学(北京)生态功能材料研究所(100083),E-mail:z.zengzhi@163.com     E-mail: z.zengzhi@163.com
引用本文:   
陈振, 张增志, 杜红梅, 王晗, 王立宁, 丛中卉, 吴浩平. 仿生材料在集水领域应用的研究现状[J]. 材料工程, 2020, 48(3): 10-18.
CHEN Zhen, ZHANG Zeng-zhi, DU Hong-mei, WANG Han, WANG Li-ning, CONG Zhong-hui, WU Hao-ping. Research and application status on biomimetic materials in the water harvesting area. Journal of Materials Engineering, 2020, 48(3): 10-18.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001432      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/10
[1] HOEKSTRA A Y,WIEDMANN T O. Humanity's unsustainable environmental footprint[J]. Science,2014,344(6188):1114-1117.
[2] HYBEL A M,GODSKESEN B,RYGAARD M. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources[J]. Journal of Environmental Management,2015,160:90-97.
[3] CHATURVEDI N D,BANDYOPADHYAY S. Optimization of multiple freshwater resources in a flexible-schedule batch water network[J]. Journal of Cleaner Production,2016,125(14):245-252.
[4] GOHARI A,ESLAMIAN S,MIRCHI A,et al. Water transfer as a solution to water shortage:a fix that can backfire[J]. Journal of Hydrology,2013,491(1):23-39.
[5] GORJIAN S,GHOBADIAN B,HASHJIN T T,et al. Experimental performance evaluation of a stand-alone point-focus parabolic solar still[J]. Desalination,2014,352:1-17.
[6] 陶金. 世界水资源态势[J]. 决策与信息,2012(10):6-9. TAO J. World water situation[J]. Decision & Information,2012(10):6-9.
[7] 贾平,罗凤歧. 世界淡水资源供求矛盾日益加剧[J]. 当代世界,2009(4):62-64. JIA P,LUO F Q. The contradiction between supply and demand of fresh water resources in the world is becoming increasingly serious[J]. Contemporary World, 2009(4):62-64.
[8] MEYERS M A,CHEN P,LIN A Y,et al. Biological materials:structure and mechanical properties[J]. Progress in Materials Science,2008,53(1):1-206.
[9] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 化工进展,2003,22(12):1258-1264. JIANG L. Super-hydrophobic nanoscale interface materials:from natural to artificial[J]. Chemical Industry and Engineering Progress,2003,22(12):1258-1264.
[10] PARKER A R,LAWRENCE C R. Water capture by a desert beetle[J]. Nature,2001,414(6859):33-34.
[11] ZHENG Y M,BAI H,HUANG Z B,et al. Directional water collection on wetted spider silk[J]. Nature,2010,463(7281):640-643.
[12] LOU S,GUO X,FAN T,et al. Butterflies:inspiration for solar cells and sunlight water-splitting catalysts[J]. Energy & Environmental Science,2012,5(11):9195-9216.
[13] KLEMM O,SCHEMENAUER R S,LUMMERICH A,et al. Fog as a fresh-water resource:overview and perspectives[J]. Ambio,2012,41(3):221-234.
[14] GEYH M A,HEINE K. Several distinct wet periods since 420ka in the Namib desert inferred from U-series dates of speleothems[J]. Quaternary Research,2014,81(2):381-391.
[15] THICKETT S C,CHIARA N,HARRIS A T. Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films[J]. Advanced Materials,2011,23(32):3718-3722.
[16] GVNTER R,MOUSTAFA H,PASCAL D,et al. Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting[J].Nature Materials,2005,4(10):754-758.
[17] NETO C,JACOBS K. Dynamics of hole growth in dewetting polystyrene films[J]. Physica a Statistical Mechanics & Its Applications,2004,339(1):66-71.
[18] HARNISH B,ROBINSON J T,PEI Z,et al. UV-cross-linked poly(vinylpyridine) thin films as reversibly responsive surfaces[J]. Chemistry of Materials,2005,17(16):4092-4096.
[19] THICKETT S C,ANDREW H,CHIARA N. Interplay between dewetting and layer inversion in poly(4-vinylpyridine)/polystyrene bilayers[J]. Langmuir the ACS Journal of Surfaces & Colloids,2010,26(20):15989-15999.
[20] WANG Y C,ZHANG L B,WU J B,et al. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting[J]. Journal of Materials Chemistry A,2015,3(37):18963-18969.
[21] WANG B,ZHANG Y,LIANG W,et al. A simple route to transform normal hydrophilic cloth into a superhydrophobic-superhydrophilic hybrid surface[J]. Journal of Materials Chemistry A,2014,2(21):7845-7852.
[22] HON K B,LI L,HUTCHINGS I M. Direct writing technology-advances and developments[J]. CIRP Annals-Manufacturing Technology,2008,57(2):601-620.
[23] ZHANG L,WU J,HEDHILI M N,et al. Inkjet printing for direct micropatterning of superhydrophobic surface:toward biomimetic fog harvesting surfaces[J]. Journal of Materials Chemistry A,2015,3(6):2844-2852.
[24] HAO B,LIN W,JIE J,et al. Efficient water collection on integrative bioinspired surfaces with star-shaped wettability patterns[J]. Advanced Materials,2014,26(29):5025-5030.
[25] SUN J Z,BAO B,JIANG J K,et al. Facile fabrication of superhydrophilic-superhydrophobic patterned surface by inkjet printing sacrificial layer on superhydrophilic surface[J]. RSC Advances,2016,6(37):31470-31475.
[26] ZHU H,GUO Z,LIU W. Biomimetic water-collecting materials inspired by nature[J]. Chemical Communications,2016,52(20):3863-3879.
[27] JIE J,ZHENG Y,JIANG L. Bioinspired one-dimensional materials for directional liquid transport[J]. Acc Chem Res,2014,47(8):2342-2352.
[28] LORENCEAU É,QUÉRÉ D. Drops on a conical wire[J]. Journal of Fluid Mechanics,2004,510:29-45.
[29] WENZEL R N. Resistance of solid surfaces to wetting by water[J].Industrial and Engineering Chemistry,1936,28(8):988-994.
[30] CHAUDHURY M K,WHITESIDES G M. How to make water run uphill[J]. Science,1992,256(5063):1539-1541.
[31] JU J, BAI H, ZHENG Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3:1247-1247.
[32] HENG X,XIANG M M,LU Z H,et al. Branched ZnO wire structures for water collection inspired by cacti[J]. ACS Appl Mater Interfaces,2014,6(11):8032-8041.
[33] LI K,JU J,XUE Z X,et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water[J]. Nature Communications,2013,4(4):2276-2282.
[34] JU J,YAO X,YANG S,et al. Cactus stem inspired cone-arrayed surfaces for efficient fog collection[J]. Advanced Functional Materials,2015,24(44):6933-6938.
[35] SUBBIAH T,BHAT G S,TOCK R W,et al. Electrospinning of nanofibers[J]. Journal of Applied Polymer Science,2010,96(2):557-569.
[36] TAN S,HUANG X,WU B. Some fascinating phenomena in electrospinning processes and applications of electrospun nanofibers[J]. Polymer International,2007,56(11):1330-1339.
[37] BAI F,WU J T,GONG G M,et al. Biomimetic "cactus spine" with hierarchical groove structure for efficient fog collection[J]. Advanced Science,2015,2(7):1500047.
[38] MARTIN H,THOMAS S. Nanomaterial building blocks based on spider silk-oligonucleotide conjugates[J]. ACS Nano,2014,8(2):1342-1349.
[39] COPELAND C G,BELL B E,CHRISTENSEN C D,et al. Development of a process for the spinning of synthetic spider silk[J]. ACS Biomaterials Science & Engineering,2015,1(7):577-584.
[40] DOBLHOFER E,HEIDEBRECHT A,SCHEIBEL T. To spin or not to spin:spider silk fibers and more[J]. Applied Microbiology & Biotechnology,2015,99(22):9361-9380.
[41] 王曙东,尹桂波,张幼珠,等. 静电纺PLA管状支架的结构及其生物力学性能[J]. 材料工程, 2008(10):316-320. WANG S D, YIN G B, ZHANG Y Z, et al. Structure and biomechanical properties of electrospun PLA tubular scaffold[J]. Journal of Materials Engineering, 2008(10):316-320.
[42] DANIEL S,CHAUDHURY M K,CHEN J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science,2001,291(5504):633-636.
[43] YANG J T,YANG Z H,CHEN C Y,et al. Conversion of surface energy and manipulation of a single droplet across micropatterned surfaces[J]. Langmuir the ACS Journal of Surfaces & Colloids,2008,24(17):9889-9897.
[44] WHITESIDES G M,CHAUDHURY M K. How to make water run uphill[J]. Science,1992,256(5063):1539-1541.
[45] CHEN Y,LI D,WANG T,et al. Orientation-induced effects of water harvesting on humps-on-strings of bioinspired fibers[J]. Scientific Reports,2016,6:19978-19984.
[46] SONG Y,LIU Y,JIANG H, et al. Bioinspired fabrication of one dimensional graphene fiber with collection of droplets application[J]. Scientific Reports, 2017, 7(1):12056-12065.
[47] IL'ICHEV A T,TSYPKIN G G. Rayleigh-taylor instability of an interface in a nonwettable porous medium[J]. Fluid Dynamics,2007,42(1):83-90.
[48] TIAN X L,CHEN Y,ZHENG Y M,et al. Controlling water capture of bioinspired fibers with hump structures[J]. Advanced Materials,2011,23(46):5459-5459.
[49] BAI H,JU J,SUN R Z,et al. Controlled fabrication and water collection ability of bioinspired artificial spider silks[J]. Advanced Materials,2011,23(32):3708-3711.
[50] BAI H,SUN R,JU J,et al. Bioinspired fibers:large-scale fabrication of bioinspired fibers for directional water collection[J]. Small,2011,7(24):3428.
[51] DONG H,WANG N,WANG L,et al. Bioinspired electrospun knotted microfibers for fog harvesting[J]. Chem Phys Chem,2012,13(5):1153-1156.
[52] ZHAO L,SONG C,ZHANG M X,et al. Bioinspired heterostructured bead-on-string fibers via controlling the wet-assembly of nanoparticles[J]. Chemical Communications,2014,50(73):10651-10654.
[53] SONG C,ZHAO L,ZHOU W B,et al. Bioinspired wet-assembly fibers:from nanofragments to microhumps on string in mist[J]. Journal of Materials Chemistry A,2014,2(25):9465-9468.
[54] HE X H,WANG W,LIU Y M,et al. Microfluidic fabrication of bio-inspired microfibers with controllable magnetic spindle-knots for 3d assembly and water collection[J]. ACS Applied Materials & Interfaces,2015,7(31):17471-17481.
[55] PENG Q F,SHAO H L,HU X C,et al. The development of fibers that mimic the core-sheath and spindle-knot morphology of artificial silk using microfluidic devices[J]. Macromolecular Materials & Engineering,2017,302(10):1700102.
[1] 王立铎, 孙文珍, 梁彤翔, 王英华, 李恒德. 仿生材料的研究现状[J]. 材料工程, 1996, 0(2): 3-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn