Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (3): 40-46    DOI: 10.11868/j.issn.1001-4381.2019.000015
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚六亚甲基胍盐酸盐功能化中空纳米二氧化硅制备新型抗菌剂的研究
张孜文, 张康民, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸
安徽大学 化学化工学院 安徽省绿色高分子重点实验室, 合肥 230601
Novel antibacterial agent prepared by poly (hexamethylene guanidine hydrochloride) functionalized hollow nano-silica
ZHANG Zi-wen, ZHANG Kang-min, YANG Jian-jun, WU Qing-yun, WU Ming-yuan, ZHANG Jian-an, LIU Jiu-yi
Key Laboratory of Environment-friendly Polymer Materials of Anhui Province, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
全文: PDF(2971 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 提出一种新型抗菌材料聚六亚甲基胍盐酸盐(PHMG)接枝的中空纳米二氧化硅(HSN-PHMG)的简便合成方法,PHMG的接枝提高了HSN的水分散性和抗菌性。用扫描电镜(SEM)、透射电镜(TEM)表征纳米二氧化硅的中空结构;傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)和热失重分析(TGA)表征PHMG的成功接枝,HSN-PHMG中PHMG的质量分数约为9.5%;抗菌测试以大肠杆菌(E.coil)和金黄色葡萄球菌(S.aureus)为测试菌种。结果表明:HSN-PHMG对E.coil和S.aureus的最小抑菌浓度(MIC)均为32 mg/L;当HSN-PHMG的浓度为64 mg/L时可以在2 h内完全杀死E.coil
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张孜文
张康民
杨建军
吴庆云
吴明元
张建安
刘久逸
关键词 聚六亚甲基胍盐酸盐中空纳米二氧化硅接枝抗菌    
Abstract:A simple synthetic method of poly(hexamethylene guanidine hydrochloride) grafted hollow nano-silica (HSN-PHMG), a novel antibacterial material, was proposed. The water dispersibility and antibacterial property of HSN grafting of PHMG were improved. The hollow structure of nano-silica was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis were used to characterize the successful grafting of PHMG and the mass fraction of PHMG is about 9.5% in HSN-PHMG. Antibacterial test using Escherichia coil (E.coil) and Staphylococcus aureus (S.aureus) as test strains and the results show that the minimum inhibitory concentration (MIC) of HSN-PHMG on E.coil and S.aureus are all 32 mg/L; E.coil can be completely killed within 2 h when the concentration of HSN-PHMG is 64 mg/L.
Key wordspoly(hexamethylene guanidine hydrochloride)    hollow nano-silica    graft    antibacterial
收稿日期: 2019-01-09      出版日期: 2020-03-18
中图分类号:  TQ131.2  
通讯作者: 杨建军(1968-),男,教授,博士生导师,研究方向:水基高分子材料,联系地址:安徽省合肥市经济开发区九龙路111号安徽大学化学化工学院(230601),E-mail:andayjj@163.com     E-mail: andayjj@163.com
引用本文:   
张孜文, 张康民, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 聚六亚甲基胍盐酸盐功能化中空纳米二氧化硅制备新型抗菌剂的研究[J]. 材料工程, 2020, 48(3): 40-46.
ZHANG Zi-wen, ZHANG Kang-min, YANG Jian-jun, WU Qing-yun, WU Ming-yuan, ZHANG Jian-an, LIU Jiu-yi. Novel antibacterial agent prepared by poly (hexamethylene guanidine hydrochloride) functionalized hollow nano-silica. Journal of Materials Engineering, 2020, 48(3): 40-46.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000015      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/40
[1] GUPTA A, LANDIS R F, LI C H, et al. Engineered polymer nanoparticles with unprecedented antimicrobial efficacy and therapeutic indices against multidrug-resistant bacteria and biofilms[J]. Journal of the American Chemical Society, 2018, 140(38):12137-12143.
[2] DU S, WANG Y Y, ZHANG C X, et al. Self-antibacterial UV-curable waterborne polyurethane with pendant amine and modified by guanidinoacetic acid[J]. Journal of Materials Science, 2018, 53(1):215-229.
[3] SAHRARO M, YEGANEH H, SORAYYA M. Guanidine hydrochloride embedded polyurethanes as antimicrobial and absorptive wound dressing membranes with promising cytocompatibility[J]. Materials Science & Engineering:C, 2016, 59(3):1025-1037.
[4] XU D Q, SU Y L, ZHAO L L, et al. Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles[J]. Journal of Biomedical Materials Research Part:A, 2017, 105(2):531-538.
[5] LUO C, LIU W J, LUO B H, et al. Antibacterial activity and cytocompatibility of chitooligosaccharide-modified polyurethane membrane via polydopamine adhesive layer[J]. Carbohydrate Polymers, 2017, 156(1):235-243.
[6] TARUSHA L, PAOLETTI S, TRAVAN A, et al. Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds[J]. Journal of Materials Science-Materials in Medicine, 2018, 29(3):22-36
[7] 李平,董阿力德尔图,孙梓嘉,等. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(增刊2):318-328. LI P, DONG A L D E T, SUN Z J, et al. Synthesis and applications of antibacterial N-halamine polymers and nanomaterials[J]. Progress IN Chemistry, 2017, 29(Suppl 2):318-328.
[8] MATTHEIS C, WANG H, MEISTER C, et al. Effect of guanidinylation on the properties of poly(2-aminoethylmethacrylate)-based antibacterial materials[J]. Macromolecular Bioscience, 2013, 13(2):242-255.
[9] WEI D F, MA Q X, GUAN Y, et al. Structural characterization and antibacterial activity of oligoguanidine (polyhexamethylene guanidine hydrochloride)[J]. Materials Science & Engineering:C, 2009, 29(6):1776-1780.
[10] YAN F H, ZHANG X B, LIU F, et al. Adjusting the properties of silicone rubber filled with nanosilica by changing the surface organic groups of nanosilica[J]. Composites:Part B, 2015, 75(1):47-52.
[11] CHIU H Y, GOSS D, HADDICK L, et al. Clickable multifunctional large-Pore mesoporous silica nanoparticles as nanocarriers[J]. Chemistry of Materials, 2018, 30(3):644-654.
[12] FOURMENTIN A, GALY J, CHARLOT A, et al. Bioinspired silica-containing polyurethane-acrylate films:towards superhydrophobicity with tunable water adhesion[J]. Polymer, 2018, 155(1):1-12.
[13] 李炳坤,王超丽,陈鹏,等. 载银介孔纳米二氧化硅复合抗菌材料的制备及其性能研究[J]. 南开大学学报(自然科学版), 2018, 51(2):31-38. LI B K, WANG C L, CHEN P, et al. The synthesis and characterization of silver nanoparticle-loaded mesoporous silica material and its antibacterial performance[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2018, 51(2):31-38.
[14] 黄连根,郑玉婴. 树枝状介孔二氧化硅的制备及其负载纳米银的抗菌性[J]. 材料工程, 2018, 46(10):135-141. HUANG L G, ZHENG Y Y. Preparation of dendritic mesoporous silica and its antibacterial properties of loaded nano Ag[J]. Journal of Materials Engineering, 2018, 46(10):135-141.
[15] 林家洪,宋天龙,刘永龙,等. 改性二氧化硅/纳米银微粒的制备及其抗菌性能分析[J]. 工业微生物, 2018, 48(5):19-22. LIN J H, SONG T L, LIU Y L, et al. Preparation of modified silica/silver nanoparticles and its antibacterial properties[J]. Industrial Microbiology, 2018, 48(5):19-22.
[16] PALLA-RUBIO B, ARAUJO-GOMES N, FERNANDEZ-GUTIERREZ M, et al. Synthesis and characterization of silica-chitosan hybrid materials as antibacterial coatings for titanium implants[J]. Carbohydrate Polymers, 2019, 203(1):331-341.
[17] WANG Y F, YIN M L, LIN X H, et al. Tailored synthesis of polymer-brush-grafted mesoporous silicas with N-halamine and quaternary ammonium groups for antimicrobial applications[J]. Journal of Colloid and Interface Science, 2019, 533(1):604-611.
[18] HOANG L H, HANH P V, PHU N D, et al. Synthesis and characterization of MnWO4 nanoparticles encapsulated in mesoporous silica SBA-15 by fast microwave-assisted method[J]. Journal of Physics and Chemistry of Solids, 2015, 77(1):122-125.
[19] 李德亮,王军,常志显,等. 二氧化硅表面的GPTMS修饰[J]. 化学进展, 2008, 20(增刊2):1115-1121. LI D L, WANG J, CHANG Z X, et al. The surface modification of silica with GPTMS[J]. Progress in Chemistry, 2008, 20(Suppl 2):1115-1121.
[20] PANT B, PARK M, JANG R S, et al. Synthesis, characterization, and antibacterial performance of Ag-modified graphene oxide reinforced electrospun polyurethane nanofibers[J]. Carbon Letters, 2017, 23(1):17-21.
[21] 邰佳,孙世旭. 一种Ag/SiO2无机抗菌材料的制备[J]. 应用化工, 2018, 47(7):1409-1411. TAI J, SUN S X. Preparation of Ag/SiO2 inorganic antibacterial materials[J]. Applied Chemical Industry, 2018, 47(7):1409-1411.
[22] 郭辉,孙琼,钱俊青. 二氧化硅纳米粒杀菌性能试验[J]. 浙江工业大学学报, 2013, 41(6):610-613. GUO H, SUN Q, QIAN J Q. The sterilization experiment of nano-SiO2[J]. Journal of Zhejiang University of Technology, 2013, 41(6):610-613.
[23] LI P, SUN S Y, DONG A, et al. Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity[J]. Applied Surface Science, 2015, 355(1):446-452.
[1] 杜春燕, 赵晖, 赵海涛. 纯钛表面载银微弧氧化陶瓷膜的制备及性能[J]. 材料工程, 2020, 48(8): 157-162.
[2] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[3] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[4] 董建成, 葛孝栋, 王清清, 魏取福. 阳离子光敏抗菌型水凝胶的制备及性能表征[J]. 材料工程, 2019, 47(2): 56-61.
[5] 舒展, 张毅, 谢虹忆, 欧阳静, 杨华明. 硅酸盐黏土矿物在抗菌方面研究进展[J]. 材料工程, 2018, 46(4): 23-30.
[6] 黄连根, 郑玉婴. 树枝状介孔二氧化硅的制备及其负载纳米银的抗菌性[J]. 材料工程, 2018, 46(10): 135-141.
[7] 叶伟杰, 陈楷航, 蔡少龄, 陈利科, 钟同苏, 王小英. 纳米银的合成及其抗菌应用研究进展[J]. 材料工程, 2017, 45(9): 22-30.
[8] 邓城, 漆小鹏, 李倩, 尹从岭, 杨辉. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程, 2017, 45(4): 113-120.
[9] 何聪, 欧宝立, 李政峰. 氧化石墨烯对聚丙烯/尼龙6两组分聚合物的增容作用[J]. 材料工程, 2017, 45(3): 13-16.
[10] 杜军, 宋永明, 张志军, 房轶群, 王伟宏, 王清文. MAH/GMA共接枝聚乳酸对木粉/PLA复合材料性能的影响[J]. 材料工程, 2017, 45(12): 30-36.
[11] 桑伟, 周岚, 冯新星, 张建春. 电子束辐照诱导丙烯酸接枝尼龙66织物的改性研究[J]. 材料工程, 2017, 45(10): 111-116.
[12] 钱金鑫, 李明愉, 冯长根. 亚胺基二乙酸螯合纤维的合成与性能研究[J]. 材料工程, 2016, 44(7): 54-60.
[13] 郑辉东, 邱洪峰, 郑玉婴, 刘艺, 连汉青, 陈志杰. 负载纳米银EVA复合发泡材料的制备及其抗菌性能[J]. 材料工程, 2016, 44(7): 107-112.
[14] 李雅琳, 张健, 平清伟, 牛梅红, 石海强, 李娜. 硅藻土基无机抗菌材料的制备与性能[J]. 材料工程, 2016, 44(3): 72-76.
[15] 高党鸽, 陈琛, 吕斌, 马建中. 原位制备季铵盐聚合物/纳米ZnO复合抗菌剂[J]. 材料工程, 2015, 43(6): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn