Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (3): 134-141    DOI: 10.11868/j.issn.1001-4381.2018.001112
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
挤出方式对黏弹性浆料3D打印出料可控性的影响
郑镭1,2, 孙维连1,*(), 孙铂1, 张雪静2, 纪宏超2,3,*()
1 河北农业大学 机电工程学院, 河北 保定 071001
2 华北理工大学 机械工程学院, 河北 唐山 063210
3 北京科技大学 国家材料服役安全科学中心, 北京 100083
Influence of extrusion methods on discharging controllability of 3D printing with viscoelastic slurry
Lei ZHENG1,2, Wei-lian SUN1,*(), Bo SUN1, Xue-jing ZHANG2, Hong-chao JI2,3,*()
1 College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, Hebei, China
2 College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
3 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(3068 KB)   HTML ( 4 )  
输出: BibTeX | EndNote (RIS)      
摘要 

基于挤出工艺的陶瓷3D打印技术应用过程中,不同挤出方式对出料速率可控性存在重要影响,从而导致打印样件在表面质量及打印成功率方面存在明显差异。针对这一问题,研究选择柱塞和螺杆两种挤出方式,在Bingham黏弹性流体浆料及0.6 mm喷嘴直径的基本条件下,结合现场实验数据和模拟仿真得出的出料速率变化曲线,对柱塞与螺杆两种挤出方式的3D打印效果进行对比分析。结果表明:螺杆挤出方式在0.03 s内,出料速率已降至原始出料速率的30%以下,而柱塞挤出方式达到该出料速率所需的时间为2.4 s,在停止供料的0.27 s内柱塞挤出方式的出料量是螺杆挤出方式出料量的3倍。通过流场分析发现黏弹性浆料条件下两种挤出装置的驱动原理不同是造成该差异的主要原因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑镭
孙维连
孙铂
张雪静
纪宏超
关键词 陶瓷3D打印黏弹性浆料挤出装置出料速率    
Abstract

In the application of ceramic 3D printing technology based on extrusion process, it was found that different extrusion methods have important influence on the controllability of the discharging speed, which leads to obvious difference in the surface quality and the success rate of printing samples. For this problem, two kinds of extruding devices with plunger and screw were selected. Under the basic conditions of Bingham viscoelastic fluid slurry and 0.6 mm nozzle diameter, the 3D printing effect of the two kinds of equipment was compared and analyzed by combining the printing test data and the simulation discharge velocity curve. The results show that the discharging speed of screw extrusion method decreases below 30% than that of the original in 0.03 s, the time required to reach this discharge speed by the plunger extrusion method is 2.4 s. The discharge amount of the plunger extrusion method is 3 times that of the screw extruder method in 0.27 s after the slurry feed is stopped. The flow field analysis shows that the different driving principle of the two extrusion methods under viscoelastic slurry condition is the main reason for this difference.

Key wordsceramic 3D printing    viscoelastic slurry    extrusion device    discharging speed
收稿日期: 2018-09-19      出版日期: 2020-03-18
中图分类号:  TB332  
  TH164  
基金资助:河北省教育厅项目(2018101002792);河北省青年科学基金项目(E2017209059);华北理工大学研究生创新项目(2018S21)
通讯作者: 孙维连,纪宏超     E-mail: bd999@eyou.com;jihongchao@ncst.edu.cn
作者简介: 纪宏超(1986-), 男, 博士后, 博士, 主要从事金属塑性加工、组织演变、增材制造等方面的研究, 联系地址:河北省唐山市曹妃甸新城渤海大道21号华北理工大学机械工程学院(063210), E-mail:jihongchao@ncst.edu.cn
孙维连(1956-), 男, 教授, 博士, 主要从事装备制造、金属组织强化等, 联系地址:河北省保定市灵雨寺街289号河北农业大学机电工程学院(071001), E-mail:bd999@eyou.com
引用本文:   
郑镭, 孙维连, 孙铂, 张雪静, 纪宏超. 挤出方式对黏弹性浆料3D打印出料可控性的影响[J]. 材料工程, 2020, 48(3): 134-141.
Lei ZHENG, Wei-lian SUN, Bo SUN, Xue-jing ZHANG, Hong-chao JI. Influence of extrusion methods on discharging controllability of 3D printing with viscoelastic slurry. Journal of Materials Engineering, 2020, 48(3): 134-141.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001112      或      http://jme.biam.ac.cn/CN/Y2020/V48/I3/134
Maximum viscosity/(Pa·s) Minimum viscosity/(Pa·s) Yield stress/Pa Critical shear rate/s-1 Consistency index Power law index Bulk modulus/Pa Goodness of fit
35.9 14.7 28.5 0.9 7 1.21 1.7×1010 0.99986
Table 1  浆料的黏性参数
Fig.1  挤出装置实物图
(a)柱塞挤出装置; (b)螺杆挤出装置
Fig.2  打印模型
Fig.3  挤出装置结构模型
(a)柱塞挤出装置; (b)螺杆挤出装置
Extrusion device Grid number Grid type Export pressure/Pa Entry type Relative motion
Plunger 929998 Hexahedral mesh 0 Speed entrance
Screw 2658133 Structural grid+non-institutional grid 0 Pressure inlet Dynamic grid:40 r/min
Table 2  数值仿真基本参数
Fig.4  不同运动状态的理想出料速率  (a)螺杆挤出装置; (b)柱塞挤出装置
Feeding time/s Plunger extruder Screw extruder
Total discharge volume/mm3 Stage discharge velocity/(mm·s-1) Total discharge volume/mm3 Stage discharge velocity/(mm·s-1)
0 0 0 0 2
0.2 0 0 0.36 10.2
0.5 0 0 2.26 12.2
1 0.48 2.5 4.58 11.8
2 1.68 6.1
4 5.53 9.8
6 10.60 12.3
Table 3  不同时刻出料速率对比
Fig.5  不同挤出方式打印的陶瓷生坯
(a)柱塞挤出方式; (b)螺杆挤出方式
State vm/(mm·s-1) vout/(mm·s-1) (vm/v)/% (vout/v)/%
Start and stop 9 9 75 75
Straight line 12 12 100 100
Curved track 6 6 50 50
Ideal 12 0 100 0
Table 4  不同运动状态下的出料速率要求
Fig.6  喷嘴与打印平面相对位置简图
Fig.7  启-停-启条件下出口平均流速图
Starting time/s Pp/Pa Ps/Pa
0.05 60486 59786
0.08 60074 13668
0.28 59892 10056
0.35 60102 54355
0.38 60142 59283
Table 5  挤出装置喷嘴附近压强
Fig.8  停止出料后0.16 s Z轴方向速度云图
(a)螺杆挤出装置;(b)柱塞挤出装置
Fig.9  启停条件下出料量对比图
Fig.10  高-低-高出料速率条件下出口平均流速对比图
1 张海鸥, 应炜晟, 符友恒, 等. 陶瓷零件增量成形技术的研究进展[J]. 中国机械工程, 2015, 26 (9): 1271- 1277.
1 ZHANG H O , YING W S , FU Y H , et al. Advances in additive shaping of ceramic parts[J]. China Mechanical Engineering, 2015, 26 (9): 1271- 1277.
2 夏驰, 曹良成, 冯联华, 等. 机械臂3D打印技术及系统的试验研究[J]. 机械设计与制造, 2018, (2): 107- 109.
2 XIA C , CAO L C , FENG L H , et al. Experimental study of 3D printing technology and systems based on robotic manipulator[J]. Machinery Design & Manufacture, 2018, (2): 107- 109.
3 LEWIS J A . Direct-write assembly of ceramics from colloidal inks[J]. Current Opinion in Solid State and Materials Science, 2002, 6 (3): 245- 250.
4 LEWIS J A . Colloidal processing of ceramics[J]. Journal of the American Ceramic Society, 2000, 83 (10): 2341- 2359.
5 GUO J Y , LEWIS J A . Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions[J]. Journal of the American Ceramic Society, 1999, 82 (9): 2345- 2358.
6 HUANG T , MASON M S , ZHAO X Y , et al. Aqueous-based freeze-form extrusion fabrication of alumina components[J]. Rapid Prototyping Journal, 2009, 15 (2): 88- 95.
7 XU N , YE X J , WEI D X , et al. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair[J]. ACS Applied Materials & Interfaces, 2014, 6 (17): 14952- 14963.
8 ZHANG X Y , GUO Z M , CHEN C G , et al. Additive manufacturing of WC-20Co components by 3D gel-printing[J]. International Journal of Refractory Metals & Hard Materials, 2017, 70, 215- 223.
9 刘骥远, 吴懋亮, 蔡杰, 等. 工艺参数对3D打印陶瓷零件质量的影响[J]. 上海电力学院学报, 2015, 31 (4): 376- 380.
9 LIU J Y , WU M L , CAI J , et al. Influence of operating parameters on 3D printing ceramic parts[J]. Journal of Shanghai University of Electric Power, 2015, 31 (4): 376- 380.
10 SHAO H P , ZHAO D C , LIN T , et al. 3D gel-printing of zirconia ceramic parts[J]. Ceramics International, 2017, 43 (16): 13938- 13942.
11 沈响.3D打印技术在航空制造中的应用研究[D].西安: 长安大学, 2017.
11 SHEN X.Research on application of 3D printing technology in aeronautical manufacture[D].Xi'an: Chang'an University, 2017.
12 HUANG T S , MASON M S , HILMAS G E , et al. Freeze-form extrusion fabrication of ceramic parts[J]. International Journal of Virtual and Physical Prototyping, 2006, 1 (2): 93- 100.
13 马青松, 陈朝辉, 郑文伟, 等. 先驱体转化法制备连续纤维增强陶瓷基复合材料的研究[J]. 材料科学与工程, 2001, 19 (4): 110- 115.
13 MA Q S , CHEN Z H , ZHENG W W , et al. Research and development of continuous-fiber-reinforced ceramic matrix composites fabricated by precursor-infiltration-pyrolysis[J]. Materials Science and Engineering, 2002, 19 (4): 110- 115.
14 马青松, 陈朝辉, 郑文伟, 等. 热压辅助先驱体裂解制备的三维Cf/Si-O-C复合材料的微观结构与力学性能[J]. 航空材料学报, 2004, 24 (5): 26- 30.
14 MA Q S , CHEN Z H , ZHENG W W , et al. Microstructures and mechanical properties of carbon fiber reinforced silicon oxycarbide composites fabricated via hot-pressing assisted pyrolysis of polysiloxane[J]. Journal of Aeronautical Materials, 2004, 24 (5): 26- 30.
15 VAJRAVELU K , SREENADH S , DEVAKI P , et al. Mathematical model for a Herschel-Bulkley fluid flow in an elastic tube[J]. Central European Journal of Physics, 2011, 9 (5): 1357- 1366.
16 郑智颖.FLUENT在粘弹性流体流动数值模拟中的应用[D].哈尔滨: 哈尔滨工业大学, 2013.
16 ZHENG Z Y.Application of FLUENT software in numerical simulation for viscoelastic fluent flow[D].Harbin: Harbin Institute of Technology, 2013.
17 DAI Y J , DENG T . Stabilization and characterization of colloidal gas aphron dispersions[J]. Journal of Colloid and Interface Science, 2003, 261 (2): 360- 365.
18 陈荣, 邓智泉, 严仰光. 永磁同步电机伺服系统中电机启动过程分析[J]. 西南交通大学学报, 2004, 39 (2): 203- 208.
18 CHEN R , DENG Z Q , YAN Y G . Analysis of starting process of PMSM servo system[J]. Journal of Southwest Jiaotong University, 2004, 39 (2): 203- 208.
19 TSUJI T, MIZUOCHI M, NISHI H, et al.A velocity measurement method for acceleration control[C]//31st Industrial Electronics Society Annual Conference of IEEE.North Carolina: IEEE, 2005: 1943-1948.
20 TUNKASIRI T , TAWICHAI N , RAENGTHON N , et al. Preparation of lanthanum-doped Pb(Zr, Ti)O3 ceramics sheets by tape casting[J]. Journal of Materials Science and Engineering, 2007, 25 (6): 899- 901.
21 王占礼, 高山山, 陈延伟, 等. 一种基于FDM-3D打印机改进喷嘴的流-固耦合模拟分析[J]. 制造业自动化, 2018, 40 (3): 47- 52.
21 WANG Z L , GAO S S , CHEN Y W , et al. An improved nozzle based on FDM-3D printer simulation analysis of fluid-solid coupling[J]. Manufacturing Automation, 2018, 40 (3): 47- 52.
[1] 罗萌, 向阳, 彭志航, 曹峰. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72.
[2] 张金栋, 孙洪霖, 刘刚, 姚佳楠, 陈春海, 王明. 聚芳醚酮树脂非等温结晶动力学及其复合材料湿热老化性能[J]. 材料工程, 2022, 50(10): 139-147.
[3] 王大伟, 李晔, 巨乐章, 朱安安. 氧气等离子体处理对CFRP表面特性及胶接界面力学性能的影响[J]. 材料工程, 2022, 50(10): 118-127.
[4] 崔雪峰, 许泽水, 姚远洋, 李明星, 叶昉, 成来飞. 颗粒级配对Si3N4w/Si3N4复合材料弯曲强度与介电性能的影响[J]. 材料工程, 2022, 50(10): 29-37.
[5] 张路, 袁芳, 王文清, 董星杰, 何汝杰. 面向一体化热防护的陶瓷基复合材料轻量化结构研究进展与挑战[J]. 材料工程, 2022, 50(10): 15-28.
[6] 李国青, 杨丽霞, 余敏. 生物态碳-陶瓷基复合材料制备方法的研究现状[J]. 材料工程, 2022, 50(10): 1-14.
[7] 郗森良, 王晓军, 张同环, 韩宗盈, 高猛, 周仕学, 于昊. 过渡金属氟化物改善2NaBH4+MgH2储氢体系的放氢热力学性能[J]. 材料工程, 2022, 50(9): 97-104.
[8] 秦建雨, 赵翰鹏, 姚金雨, 张文超, 杨荣杰. 有机磷阻燃剂插层钙基蒙脱土纳米复合物的制备和表征[J]. 材料工程, 2022, 50(9): 78-88.
[9] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[10] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[11] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[12] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[13] 任素娥, 王雅娜, 杨程. 固体浮力材料用复合泡沫的研究进展[J]. 材料工程, 2022, 50(6): 86-96.
[14] 邓奇林, 杨敏, 姚彧敏, 李红, 任慕苏, 孙晋良. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5): 139-146.
[15] 程子敬, 王凯峰, 张连洪. 基于微观尺度X射线断层扫描技术的短切碳纤维SMC复合材料失效分析[J]. 材料工程, 2022, 50(5): 130-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn