Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (4): 46-59    DOI: 10.11868/j.issn.1001-4381.2019.000194
  纳米材料专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯纳米流体研究进展
白明洁1,2, 刘金龙1,*(), 齐志娜1, 何江2, 魏俊俊1, 苗建印2, 李成明1
1 北京科技大学 新材料技术研究院, 北京 100083
2 北京空间飞行器总体设计部 空间热控技术北京市重点实验室, 北京 100094
Research progress in nanofluids with graphene addition
Ming-jie BAI1,2, Jin-long LIU1,*(), Zhi-na QI1, Jiang HE2, Jun-jun WEI1, Jian-yin MIAO2, Cheng-ming LI1
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Space Thermal Control Technology, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
全文: PDF(2606 KB)   HTML ( 12 )  
输出: BibTeX | EndNote (RIS)      
摘要 

润滑与冷却是当前工业领域两个重要的议题。前者与机械装置、零部件的使用可靠性和寿命直接相关,对减少摩擦产生的能耗具有重大意义,而后者对于高功率密度器件的热管理至关重要。二者的结合在航空航天、汽车机械等领域广泛存在,而纳米流体是一种很好的承载二者的工作介质。本文针对石墨烯纳米流体这一热点,综述了石墨烯纳米流体的分散理论基础与方法,对影响石墨烯纳米流体悬浮稳定性因素进行了调研,归纳总结了纳米流体的导热机理、影响因素以及石墨烯纳米流体进展,分析了纳米流体未实现大面积应用的主要原因,同时对石墨烯作为添加剂应用于润滑领域的进展进行了评述。最终提出石墨烯纳米流体协同增强换热与减磨润滑的应用设计。在航天器等应用领域中,由于对石墨烯纳米流体的力热耦合综合性能缺乏广泛研究,以及航天器稳定性和长期运行可靠性等问题,未来的研究应以航天传热工质为基础,进行纳米粒子针对性设计,通过系统开展基于空间环境动态流动换热性能与回路寿命的研究,为未来实现纳米流体的航天器应用奠定理论基础和提供技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
白明洁
刘金龙
齐志娜
何江
魏俊俊
苗建印
李成明
关键词 石墨烯纳米流体分散稳定性表面修饰热导率摩擦性能    
Abstract

Lubrication and cooling are two important issues in the current industrial field. The former is of great significance to the energy consumption caused by friction, which is directly related to the service reliability and life of the components in the mechanical field. The latter is very important for the management and application of the final generation of thermal energy in the process of energy conversion.Combination of them exists widely in fields such as aerospace, automobile machinery, etc.Addition of nano-materials into working fluid can not only significantly improve the thermal conductivity of heat transfer fluids, but also achieve anti-wear and lubrication of mechanical parts, showing excellent mechanical and thermal comprehensive properties. Nanofluids are a good working medium for both aspects.In this paper, in view of the hotspot of graphene nanofluids, the theoretical basis and method of dispersion of graphene nanofluids were reviewed, and the factors affecting the suspension stability of graphene nanofluids were investigated.The thermal conductivity mechanism, the influencing factors and the current progress of graphene nanofluids were analyzed. The main reasons for the non-large-scale application of nanofluids were analyzed. The progress of graphene as an additive in the field of lubrication was reviewed. Finally, the application design of graphene nanofluid synergistically enhanced heat transfer and antifriction lubrication was proposed. In the current spacecraft and other applications, due to the lack of extensive research on the thermal mechanical coupling performance of graphene nanofluids and the stability of spacecraft and long-term operational reliability, future research should be based on the current aerospace heat transfer medium and focus on the targeted design of nanoparticles.The research on dynamic flow heat transfer performance and loop life based on space environment should be carried out, which will lay a theoretical foundation and provide technical support for the future application of nanofluids in the spacecrafts.

Key wordsgraphene    nanofluid    dispersion stability    surface modification    thermal conductivity    friction property
收稿日期: 2019-03-05      出版日期: 2020-04-23
中图分类号:  TB383  
基金资助:北京市自然科学基金项目(4192038);国家自然科学基金项目(51402013);中央高校基本科研业务费项目(FRF-AT-18-007)
通讯作者: 刘金龙     E-mail: liujinlong@ustb.edu.cn
作者简介: 刘金龙(1985-), 男, 副研究员, 博士, 主要从事碳基功能材料的应用研究, 联系地址:北京市海淀区学院路30号北京科技大学新材料技术研究院(100083), E-mail:liujinlong@ustb.edu.cn
引用本文:   
白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
Ming-jie BAI, Jin-long LIU, Zhi-na QI, Jiang HE, Jun-jun WEI, Jian-yin MIAO, Cheng-ming LI. Research progress in nanofluids with graphene addition. Journal of Materials Engineering, 2020, 48(4): 46-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000194      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/46
Thermal conductivity/ (W·m-1·K-1)Interface thermal resistance, rGr-SiO2/(K·m2·W-1)Specific surface area/ (m2·g-1)Young’s modulus/ TPaBreaking strength/ GPaOptical transmittance/%
≈5300≈4×10-82600≈1130≈97.7
Table 1  石墨烯的特性[6-13]
SampleThermal conductivity/(W·m-1·K-1)MethodRef
Monolayer mechanically stripped graphene (suspension)4840-5300Raman photothermal method[14]
Monolayer CVD graphene(suspension)(2500 +1100/-1050)(RT)(1400 +500/-480) (500 K)Raman photothermal method[15]
Single layer graphene(support)600Thermoelectric bridge[16]
Silica encapsulates graphene in a single layer160Method of heat distribution[17]
Few layers of graphene(2-4 layers)1300-2800Raman photothermal method[18]
Multilayer RGO1043.5Laser flashing[19]
Graphite2000Theory:model calculation[20]
Graphene nanoribbon(1 nm thick, smooth edge)3000Theory:dynamic model[21]
Graphene nanoribbon(1 nm thick, rough edge)500Theory:dynamic model[21]
Table 2  石墨烯材料的热导率
Fig.1  斥力势能,吸力势能及总势能曲线[24]
TypeDispersantSuitable for
Organic dispersantPolyethylene glycolAl2O3-water
Sodium dodecylbenzene sulfonateMetal-water, metal oxide-water
PolyvinylpyrrolidoneMetal-water, metal oxide-water, carbon-based nanomaterial-water
Acacia gumCarbon nanomaterials-water
Inorganic dispersantSodium tripolyphosphate
Hexametaphosphate
Sodium pyrophosphate
Table 3  常见分散剂的分类及用途[25]
Base fluidNano particleSurfactantConcentrationStability test methodDurationRef
Ethylene glycolGraphene oxide nanosheetsN/A0.01%-0.05%(volume fraction)Constant of thermal conductivityAlmost constant within 7 days[30]
Distilled waterPolydispersed grapheme nanosheet suspensionsN/A0.5%(mass fraction)Sedimentation photograph capturingShelf-life stability over 6 months[31]
Distilled waterFunctionalized graphene nanofluidN/A0.01%-0.05%(mass fraction)Sedimentation photograph capturing, constant of thermal conductivityAlmost constant within 7 days[32]
70% ethylene glycol+30% distilled waterGraphene based nanofluidsN/A0.041%-0.395% (volume fraction)Constant of thermal conductivityConstant for 150 days (5 months)[33]
Water+different surfactantSolvent-free graphene nanofluidN/A0.1%(mass fraction)Sedimentation photograph capturing, UV-Vis spectrophotometerAlmost constant within 7 days[34]
Distilled waterGraphene oxide- based nanofluidsN/A0.0001%-0.0006% (mass fraction)Sedimentation photograph capturing, UV-Vis spectrophotometer, Zeta potential testA period of 60 days[35]
Distilled waterNitrogen-doped grapheneTriton X-1000.01%, 0.02%, 0.04%, and 0.06%(mass fraction)Sedimentation photograph capturing, UV-Vis spectrophotometer, Zeta potential testConstant for 180 days (6 months)[36]
Distilled waterGraphene nanoplatelets (GNP) with 3 specific surface area of (300, 500, 750 m2/g)N/A0.025%, 0.05%, 0.075%, and 0.1% (mass fraction)Sedimentation photograph capturing, UV-Vis spectrophotometer, Zeta potential test600 h[37]
Distilled waterGraphenePVA0.005%, 0.01%, and 0.02%UV-Vis spectrophotometer1 week[38]
Distilled waterGraphene oxide/ graphene nanoplateletsChanging pH0.025%(mass fraction)Sedimentation photograph capturing2 months[39]
DW+surfactantMWCNTs and graphene nanopowderSDBS0.01%-0.1%(mass fraction), mass ratios of MWCNTs to graphene were 1/3, 3/1, 1/1, 1/2 and 2/1Sedimentation photograph capturing4 days[40]
Silicone oilFunctionalized graphene nanosheets nanofluidN/A0.01%, 0.03%, 0.05% and 0.07%(mass fraction)Sedimentation photograph capturing, UV-Vis spectrophotometer256 h[41]
Table 4  纳米流体稳定性的总结
Fig.2  纳米流体导热机理[42]
(a)纳米颗粒布朗运动;(b)纳米颗粒分散、团聚;(c)纳米颗粒液体层;(d)声子扩散和弹道输运;(e)热泳理论;(f)近场辐射
Fig.3  不同浓度石墨烯纳米流体的热导率随温度的变化图[61]
Fig.4  不同质量分数的氧化石墨烯纳米流体热导率(a)和不同温度下热导率随质量分数的提高百分比(b)[63]
Fig.5  不同条件下石墨烯水溶液的减摩性能[78]
(a)载荷;(b)频率;(c)质量分数
Fig.6  纯水润滑后碳化钨陶瓷球上磨斑的SEM图像(a), (c)以及放大图像(b), (d)[79]
1 苗建印, 张红星, 吕巍, 等. 航天器热传输技术研究进展[J]. 航天器工程, 2010, 19 (2): 106- 112.
doi: 10.3969/j.issn.1673-8748.2010.02.015
1 MIAO J Y , ZHANG H X , LV W , et al. Development of heat transfer technologies for spacecraft[J]. Spacecraft Engineering, 2010, 19 (2): 106- 112.
doi: 10.3969/j.issn.1673-8748.2010.02.015
2 何江, 苗建印, 张红星, 等. 航天器深低温热管技术研究现状及发展趋势[J]. 真空与低温, 2018, 24 (1): 1- 8.
doi: 10.3969/j.issn.1006-7086.2018.01.001
2 HE J , MIAO J Y , ZHAO H X , et al. Current status and development trend of cryogenic heat pipe technologies in spacecraft[J]. Vacuum and Cryogenics, 2018, 24 (1): 1- 8.
doi: 10.3969/j.issn.1006-7086.2018.01.001
3 EASTMAN J A , CHOI U S , LI S , et al. Enhanced thermal conductivity through the development of nanofluids[J]. MRS Online Proceedings Library, 1996, 457.
4 苗建印, 钟奇, 赵啟伟, 等. 航天器热控制技术[M]. 北京: 北京理工大学出版社, 2018.
4 MIAO J Y , ZHONG Q , ZHAO Q W , et al. Spacecraft thermal control technology[M]. Beijing: Beijing Institute of Technology Press, 2018.
5 BAI M J, LI C M, LIU J L. Study on properties of graphene and liquid refrigerant composites[C]//Xi'an: 13th International Conference on Two-Phase Systems for Space and Ground Applications.Xi'an: XJTU, 2018: 104-105.
6 BALANDIN A A , GHOSH S , BAO W , et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8 (3): 902- 907.
doi: 10.1021/nl0731872
7 FREITAG M , STEINER M , MARTIN Y , et al. Energy dissipation in graphene field-effect transistors[J]. Nano Letters, 2009, 9 (5): 1883- 1888.
doi: 10.1021/nl803883h
8 CHAE H K , SIBERIO-PÉREZ D Y , KIM J , et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427 (6974): 523- 527.
doi: 10.1038/nature02311
9 LEE C , WEI X , KYSAR J W , et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887): 385- 388.
doi: 10.1126/science.1157996
10 TOMBROS N , JOZSA C , POPINCIUC M , et al. Electronic spin transport and spin precession in single grapheme layers at room temperature[J]. Nature, 2007, 448 (7153): 571- 574.
doi: 10.1038/nature06037
11 NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effectinatomicallythincarbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
12 MIAO F , WIJERATNE S , ZHANG Y , et al. Phase-coherent transport in graphene quantum billiards[J]. Science, 2007, 317 (5844): 1530- 1503.
doi: 10.1126/science.1144359
13 DU X , SKACHKO I , BARKER A , et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology, 2008, 3 (8): 491- 495.
doi: 10.1038/nnano.2008.199
14 BALANDIN A A , GHOSH S , TEWELDEBRHAN D , et al. Extremely high thermal conductivity of graphene:prospects for thermal management applications in silicon nanoelectronics[J]. Applied Physics Letters, 2008, 92 (15): 151911- 151913.
doi: 10.1063/1.2907977
15 CAI W W , MOOREA L , ZHU Y W , et al. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition[J]. Nano Letter, 2010, 10 (5): 1645- 1651.
doi: 10.1021/nl9041966
16 SEOL J H , JO I , MOORE A L , et al. Two-dimensional phonon transport in supported graphene[J]. Science, 2010, 328 (5975): 213- 216.
doi: 10.1126/science.1184014
17 JANG W , CHEN Z , BAO W Z , et al. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite[J]. Nano Letter, 2010, 10, 3909- 3913.
doi: 10.1021/nl101613u
18 GHOSH S , BAO W , NIKA D L , et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature Materials, 2010, 9 (7): 555- 558.
doi: 10.1038/nmat2753
19 SONG N J , CHEN C M , LU C X , et al. Thermally reduced graphene oxide films as flexible lateral heat spreaders[J]. Journal of Materials Chemistry A, 2014, 2 (39): 16563- 16568.
doi: 10.1039/C4TA02693D
20 NIKA D L , GHOSH S , POKATILOV E P , et al. Lattice thermal conductivity of graphene flakes:comparison with bulk graphite[J]. Applied Physics Letters, 2009, 94, 203103.
doi: 10.1063/1.3136860
21 EVANS W J , HU L , KEBLINSKI P , et al. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics:effect of ribbon width, edge roughness, and hydrogen termination[J]. Applied Physics Letters, 2010, 96 (20): 203112.
doi: 10.1063/1.3435465
22 EAPEN J , RUSCONI R , PIAZZA R , et al. The classical nature of thermal conduction in nanofluids[J]. Journal of Heat Transfer, 2010, 132 (10): 369- 380.
23 YU W , CHOI S U S . The role of interfacial layers in the enhanced thermal conductivity of nanofluids:a renovated Hamilton-Crosser model[J]. Journal of Nanoparticle Research, 2004, 6 (4): 355- 361.
doi: 10.1007/s11051-004-2601-7
24 胡纪华, 杨兆禧, 郑忠, 等. 胶体与界面化学[M]. 广州: 华南理工大学出版社, 2002.
24 HU J H , YANG Z X , ZHENG Z , et al. Colloid and interfacial chemistry[M]. Guangzhou: South China University of Techno-logy Press, 2002.
25 李天宇.石墨烯纳米流体的制备和换热特性的研究[D].哈尔滨: 哈尔滨工业大学, 2015.
25 LI T Y. Preparation and heat transfer characteristics of graphene nanofluids[D]. Harbin: Harbin Institute of Technology, 2015.
26 袁小亚. 石墨烯的制备研究进展[J]. 无机材料学报, 2011, 26 (6): 561- 570.
26 YUAN X Y . Progress in the preparation of graphene[J]. Journal of Inorganic Materials, 2011, 26 (6): 561- 570.
27 刘金龙, 白明洁, 李成明, 等.一种全氟三乙胺基高导热润滑纳米流体的制备方法: CN109021935A[P].2018-12-18.
27 LIU J L, BAI M J, LI C M, et al. Preparation method of perfluorotriethylamino high-heat-conducting lubricating nano-fluid: CN109021935A[P].2018-12-18.
28 BERMAN D , ERDEMIR A , SUMANT A V , et al. Graphene:a new emerging lubricant[J]. Materials Today, 2014, 17 (1): 31- 42.
doi: 10.1016/j.mattod.2013.12.003
29 NIYOGI S , BEKYAROVA E , ITKIS M E , et al. Solution properties of graphite and graphene[J]. Journal of the American Chemical Society, 2006, 128 (24): 7720- 7721.
doi: 10.1021/ja060680r
30 YU W, XIE H, CHEN L, et al. The preparation and thermal conductivities enhancement of nanofluids containing graphene oxide nanosheets[C]//2010 14th International Heat Transfer Conference.Washington, USA: ASME, 2010: 569-573.
31 DHAR P , ANSARI M , GUPTA S , et al. Percolation network dynamicity and sheet dynamics governed viscous behavior of polydispersed graphene nanosheet suspensions[J]. Journal of Nanoparticle Research, 2013, 15 (2095): 1- 12.
32 SADEGHINEZHAD E , MEHRALI M , SAIDUR R , et al. A comprehensive review on graphene nanofluids:recent research, development and applications[J]. Energy Conversion and Mana-gement, 2016, 111, 466- 487.
33 KOLE M , DEY T K . Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids[J]. Journal of Applied Physics, 2013, 113 (8): 084307.
doi: 10.1063/1.4793581
34 KHALILIAN F , AHMADIAN S . Molecularly imprinted polymer on a SiO2-coated graphene oxide surface for the fast and selective dispersive solid-phase extraction of Carbamazepine from biological samples[J]. Journal of Separation Science, 2016, 39 (8): 1500- 1508.
doi: 10.1002/jssc.201501392
35 HADADIAN M , GOHARSHADI E , YOUSSEFI A . Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids[J]. Journal of Nanoparticle Research, 2014, 16 (2788): 1- 17.
36 MEHRALI M , SADEGHINEZHAD E , LATIBARI S T , et al. Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids[J]. Journal of Materials Science, 2014, 49 (20): 7156- 7171.
doi: 10.1007/s10853-014-8424-8
37 SADEGHINEZHAD E , MEHRALI M , AHAN LATIBARI S , et al. Experimental investigation of convective heat transfer using graphene nanoplatelet based nanofluids under turbulent flow conditions[J]. Industrial & Engineering Chemistry Research, 2014, 53 (31): 12455- 12465.
38 AKHAVAN-ZANJANI H , SAFFAR-AVVAL M , MANSOU-RKIAEI M , et al. Turbulent convective heat transfer and pressure drop of graphene-water nanofluid flowing inside a horizontal circular tube[J]. Journal of Dispersion Science and Technology, 2013, 35 (9): 1230- 1240.
39 KAZI S N , BADARUDIN A , ZUBIR M N M , et al. Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets[J]. Nanoscale Research Letters, 2015, 10 (212): 1- 15.
40 MAHMUDUL H A K M , KWON S , KIM J , et al. An experimental study on thermal characteristics of nanofluid with graphene and multi-wall carbon nanotubes[J]. Journal of Central South University of Technology, 2015, 22, 3202- 3210.
doi: 10.1007/s11771-015-2857-3
41 MA W S , YANG F , SHI J J , et al. Silicone based nanofluids containing functionalized graphene nanosheets[J]. Colloids and Surfaces:A, 2013, 431, 120- 126.
doi: 10.1016/j.colsurfa.2013.04.031
42 赵国昌, 曹磊, 宋丽萍, 等. 纳米流体导热机理研究分析[J]. 沈阳航空航天大学学报, 2013, 30 (4): 7- 11.
doi: 10.3969/j.issn.2095-1248.2013.04.002
42 ZHAO G C , CAO L , SONG L P , et al. Study and analysis of the heat-conducting mechanism of nanofluid[J]. Journal of Shenyang University of Aeronautics and Astronautics, 2013, 30 (4): 7- 11.
doi: 10.3969/j.issn.2095-1248.2013.04.002
43 PROBSTEIN R F . Physicochemical hydrodynamics:an introduction[M]. New York: John Wiley & Sons, 1994.
44 JANG S P , CHOI S U S . Role of Brownian motion in the enhanced thermal conductivity of nanofluids[J]. Applied Physics Letters, 2004, 84, 4316.
doi: 10.1063/1.1756684
45 WANG J J , ZHENG R T , GAO J W , et al. Heat conduction mechanisms in nanofluids and suspensions[J]. Nano Today, 2012, 7, 124- 136.
doi: 10.1016/j.nantod.2012.02.007
46 KEBLINSKI P , PHILLPOT S R , CHOI S U S , et al. Mechanisms of heat flow in suspensions of nano-sized particles[J]. International Journal of Heat Transfer, 2002, 45, 855- 863.
doi: 10.1016/S0017-9310(01)00175-2
47 NIE C , MARLOW W H , HASSAN Y A . Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids[J]. International Journal of Heat and Mass Transfer, 2008, 51, 1342- 1348.
doi: 10.1016/j.ijheatmasstransfer.2007.11.034
48 KOO J , KLEINSTREUER C . Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids[J]. International Communications in Heat and Mass Transfer, 2005, 32, 1111- 1118.
doi: 10.1016/j.icheatmasstransfer.2005.05.014
49 ABDALLAH P B . Heat transfer through near-field interactions in nanofluids[J]. Applied physics Letters, 2006, 89, 113- 117.
50 MAXWELL J C . Electricity and magnetism:part Ⅱ [M]. 3rd ed London: Clarendon Press, 1904.
51 HAMILTON R L , CROSSER O K . Thermal conductivity of heterogeneous two-component systems[J]. Industrial & Engineering Chemistry Fundamentals, 1962, 1 (3): 27- 40.
52 LEAL L G . On the effective conductivity of a dilute suspension of spherical drops in the limit of low particle peclet number[J]. Chemical Engineering Communications, 1973, 1 (1): 21- 31.
53 GUPTE S K , ADVANI S G , HUQ P . Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension[J]. International Journal of Heat and Mass Transfer, 1995, 38 (16): 2945- 2958.
doi: 10.1016/0017-9310(95)00060-M
54 宣益民, 李强. 纳米流体能量传递理论与应用[M]. 北京: 科学出版社, 2010.
54 XUAN Y M , LI Q . Theory and application of nanofluid energy transfer[M]. Beijing: Science Press, 2010.
55 CHU K , LI W S , TANG F L . Flatness-dependent thermal conductivity of graphene-basedcomposites[J]. Physics Letters A, 2013, 377 (12): 910- 914.
doi: 10.1016/j.physleta.2013.02.009
56 MEHRALI M , SADEGHINEZHAD E , LATIBARI S T , et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets[J]. Nanoscale Research Letters, 2014, 9 (1): 1- 12.
doi: 10.1186/1556-276X-9-1
57 PARK S S , KIM N J . Influence of the oxidation treatment and the average particle diameter of graphene for thermal conductivity enhancement[J]. Journal of Industrial and Engineering Chemistry, 2014, 20 (4): 1911- 1915.
doi: 10.1016/j.jiec.2013.09.011
58 AHAMMED N , ASIRVATHAM L G , TITUS J , et al. Measurement of thermal conductivity of graphene-water nanofluid at below and above ambient temperatures[J]. International Communications in Heat and Mass Transfer, 2016, 70, 66- 74.
doi: 10.1016/j.icheatmasstransfer.2015.11.002
59 HAJJAR Z , ALI M R , AHMAD G . Enhanced thermal conductivities of graphene oxide nanofluids[J]. International Communications in Heat and Mass Transfer, 2014, 57, 128- 131.
doi: 10.1016/j.icheatmasstransfer.2014.07.018
60 GHOZATLOO A , SHARIATY-NIASAR M , RASHIDI A M . Preparation of nanofluids from functionalized graphene by new alkaline method and study on the thermal conductivity and stability[J]. International Communications in Heat and Mass Transfer, 2013, 42, 89- 94.
doi: 10.1016/j.icheatmasstransfer.2012.12.007
61 GHOZATLOO A , RASHIDI A , SHARIATY-NIASSAR M . Con-vective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger[J]. Experimental Thermal & Fluid Science, 2014, 53 (2): 136- 141.
62 YU W , XIE H , BAO D . Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets[J]. Nanotechnology, 2010, 21 (5): 055705.
doi: 10.1088/0957-4484/21/5/055705
63 ESFAHANI M R , LANGURI E M , NUNNA M R . Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid[J]. International Communications in Heat and Mass Transfer, 2016, 76, 308- 315.
doi: 10.1016/j.icheatmasstransfer.2016.06.006
64 LI X , CHEN Y , MO S P , et al. Effect of surface modification on the stability and thermal conductivity of water-based SiO2-coated graphene nanofluid[J]. Thermochimica Acta, 2014, 595, 6- 10.
doi: 10.1016/j.tca.2014.09.006
65 SHENDE R , SUNDARA R . Nitrogen doped hybrid carbon based composite dispersed nanofluids as working fluid for low-temperature direct absorption solar collectors[J]. Solar Energy Materials and Solar Cells, 2015, 140, 9- 16.
doi: 10.1016/j.solmat.2015.03.012
66 BABY T T , SUNDARA R . Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids[J]. The Journal of Physical Chemistry C, 2011, 115 (17): 8527- 8533.
doi: 10.1021/jp200273g
67 BABY T T , RAMAPRABHU S . Synthesis and nanofluid application of silver nanoparticles decorated graphene[J]. Journal of Materials Chemistry, 2011, 21 (26): 9702- 9709.
doi: 10.1039/c0jm04106h
68 YANG Y J, OZTEKIN A, NETI S, et al. Characterization and convective heat transfer with nanofluids[C]//ASME.JSME 20118th Thermal Engineering Joint Conference. Honolulu, USA: ASME, 2011.
69 蒲吉斌, 王立平, 薛群基. 石墨烯摩擦学及石墨烯基复合润滑材料的研究进展[J]. 摩擦学学报, 2014, 34 (1): 93- 112.
69 PU J B , WANG L P , XUE Q J . Progress in the study of graphene tribology and graphene-based composite lubricating materials[J]. Tribology, 2014, 34 (1): 93- 112.
70 FILLETER T , MCCHESNEY J L , BOSTWICK A , et al. Friction and dissipation in epitaxial graphene films[J]. Physical Review Letters, 2009, 102 (8): 086102.
doi: 10.1103/PhysRevLett.102.086102
71 LEE C G , WEI X D , LI Q Y , et al. Elastic and frictional properties of graphene[J]. Physica Status Solidi B, 2009, 246 (11/12): 2562- 2567.
72 SMOLYANITSKY A , KILLGORE J P , TEWARY V K . Effect of elastic deformation on frictional properties of few-layer graphene[J]. Physical Review B, 2012, 85 (3): 1- 6.
73 REGUZZONI M , FASOLINO A , MOLINARI E , et al. Friction by shear deformations in multilayer graphene[J]. Jounal of Physical Chemistry C, 2012, 116 (39): 21104- 21108.
doi: 10.1021/jp306929g
74 SANDOZ-ROSADO E J , TERTULIANO O A , TERRELL E J . An atomistic study of the abrasive wear and failure of graphene sheets when used as a solid lubricant and a comparison to diamond-like-carbon coatings[J]. Carbon, 2012, 50 (11): 4078- 4084.
doi: 10.1016/j.carbon.2012.04.055
75 ROBINSON B J , KAY N D , KOLOSOV O V . Nanoscale interfacial interactions of graphene with polar and nonpolar liquids[J]. Langmuir, 2013, 29 (25): 7735- 7742.
doi: 10.1021/la400955c
76 LIU L , CHEN Y W , HUANG P . Preparation and tribological properties of organically modified graphite oxide in liquid paraffin at ultra-low concentrations[J]. RCS Advances, 2015, 5 (110): 90525- 90530.
77 乔玉林, 赵海朝, 臧艳, 等. 多层石墨烯水分散体系的摩擦磨损性能研究[J]. 摩擦学学报, 2014, 34 (5): 523- 530.
77 QIAO Y L , ZHAO H C , ZANG Y , et al. Friction and wear properties of water-dispersing system of multilayer graphene[J]. Tribology, 2014, 34 (5): 523- 530.
78 崔庆生, 乔玉林, 赵海朝, 等. 石墨烯在水中的分散稳定性及其减摩性能研究[J]. 润滑与密封, 2014, (5): 47- 50.
doi: 10.3969/j.issn.0254-0150.2014.05.009
78 CUI Q S , QIAO Y L , ZHAO H C , et al. Study on dispersion stability and antifriction properties of graphene in water[J]. Lubrication and Seal, 2014, (5): 47- 50.
doi: 10.3969/j.issn.0254-0150.2014.05.009
79 KINOSHITA H , NISHINA Y , ALIAS A A , et al. Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives[J]. Carbon, 2014, 66, 720- 723.
doi: 10.1016/j.carbon.2013.08.045
80 ELOMAA O , SINGH V K , IYER A , et al. Graphene oxide in water lubrication on diamond-like carbon vs. stainless steel high-load contacts[J]. Diamond and Related Materials, 2015, 52, 43- 48.
doi: 10.1016/j.diamond.2014.12.003
81 SONG H J , LI N . Frictional behavior of oxide graphene nanosheets as water-base lubricant additive[J]. Applied Physics:A, 2011, 105 (4): 827- 832.
doi: 10.1007/s00339-011-6636-1
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[3] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[4] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[5] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[6] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[7] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[8] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[9] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[10] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[11] 李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
[12] 李颖, 雷蕊, 徐文凯, 朱小雪, 黄艳凤. 磁性氧化石墨烯基17β-雌二醇分子印迹复合膜的制备与性能[J]. 材料工程, 2021, 49(6): 170-177.
[13] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[14] 杜娟, 曹翔宇, 宋海鹏, 魏子明, 李香云, 杨涵清, 杨梓铭, 李伯阳, 李海龙. 氧化石墨烯在金属表面的应用及其机理研究进展[J]. 材料工程, 2021, 49(2): 32-41.
[15] 吴旭, 唐晓宁, 黄鑫威, 刘美丽, 周文华, 欧阳全胜. 液相制备石墨烯/硫复合材料及其在锂硫电池正极中的应用[J]. 材料工程, 2021, 49(2): 114-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn