Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 60-72    DOI: 10.11868/j.issn.1001-4381.2019.000539
  纳米材料专栏 本期目录 | 过刊浏览 | 高级检索 |
分子印迹光子晶体的研究进展
王校辉1, 陈功1, 董志强2, 朱志刚1,2, 陈诚1
1. 上海第二工业大学 工学部 环境与材料工程学院, 上海 201209;
2. 上海第二工业大学 资源循环科学与工程中心, 上海 201209
Progress in molecular imprinted photonic crystals
WANG Xiao-hui1, CHEN Gong1, DONG Zhi-qiang2, ZHU Zhi-gang1,2, CHEN Cheng1
1. School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China;
2. Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
全文: PDF(4453 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 光子晶体是至少两种不同折射率介质周期性排列而成的有序结构材料,通过改变其平均折射率或晶格间距等参数可以实现对光的调控。响应性光子晶体结构与分子印迹技术相结合制备的分子印迹光子晶体化学传感器因特异性强、灵敏度高且具有自表达能力等优点而受到人们的青睐,为微量及痕量物质的检测提供了新思路。本文着重介绍了基于二维和三维光子晶体的传感材料,尤其是分子印迹光子晶体(MIPC)的制备方法、性能特点和应用研究进展,对分子印迹光子晶体在可视化检测的研究前景做了展望,对提高分辨率、稳定性等问题做了分析。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王校辉
陈功
董志强
朱志刚
陈诚
关键词 光子晶体分子印迹技术传感器自表达    
Abstract:Photonic crystal is a kind of ordered material which consists of two or more periodic arranged refractive index materials, and the propagation of light can be controlled by changing its average refractive index or lattice spacing. The molecularly imprinted photonic crystal chemical sensors based on the combination of responsive photonic crystal structure and molecular imprinting technique have attracted research interests due to their strong specificity, high sensitivity and self-expression ability, which also provide a novel strategy for the trace detection. In this review, the two- and three-dimensional photonic crystal sensor materials were introduced, and the preparation, properties and applications of molecular imprinted photonic crystal(MIPC) were reviewed. The future research focus such as the improvement of resolution and repeatability of MIPC visual detection materials was analyzed and prospected at last.
Key wordsphotonic crystal    molecular imprinting technology    sensors    self-expression
收稿日期: 2019-06-06      出版日期: 2020-04-23
中图分类号:  O799  
  TQ9  
通讯作者: 陈诚(1983-),男,副教授,博士,研究方向为功能化光子晶体材料,联系地址:上海市浦东新区金海路2360号上海第二工业大学工学部环境与材料工程学院(201209),E-mail:chencheng@sspu.edu.cn     E-mail: chencheng@sspu.edu.cn
引用本文:   
王校辉, 陈功, 董志强, 朱志刚, 陈诚. 分子印迹光子晶体的研究进展[J]. 材料工程, 2020, 48(4): 60-72.
WANG Xiao-hui, CHEN Gong, DONG Zhi-qiang, ZHU Zhi-gang, CHEN Cheng. Progress in molecular imprinted photonic crystals. Journal of Materials Engineering, 2020, 48(4): 60-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000539      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/60
[1] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23):2486-2489.
[2] YABLONOVITCH E. Inhibited spontaneous emission in solidstate physics and electronics[J]. Physical Review Letters, 1987, 58(20):2059-2062.
[3] CHEN C, DONG Z Q, CHEN Y, et al. Revealing invisible photonic printing:colorful pattern shown by water[J]. IOP Conference Series:Materials Science and Engineering, 2017, 167:012073.
[4] ZHANG F S, LIU E X, ZHENG X D, et al. A flexible imprinted photonic resin film templated by nanocrystalline cellulose for naked-eye recognition of sulfonamides[J]. Journal of Industrial and Engineering Chemistry, 2017, 58(25):172-178.
[5] NGUYEN T D, PERES B U, CARVALHO R M, et al. Photonic hydrogels from chiral nematic mesoporous chitosan nanofibril assemblies[J]. Advanced Functional Materials, 2016, 26(17):2875-2881.
[6] CHEN C, DONG Z Q, SHEN J H, et al. 2D photonic crystal hydrogel sensor for tear glucose monitoring[J]. ACS Omega, 2018, 3(3):3211-3217.
[7] FU Q Q, ZHU H M, GE J P. Electrically tunable liquid photonic crystals with large dielectric contrast and highly saturated structural colors[J]. Advanced Functional Materials, 2018,28(43):1804628.
[8] FU Q Q, CHEN A, SHI L, et al. A polycrystalline SiO2 colloidal crystal film with ultra-narrow reflections[J]. Chemical Communications, 2015, 51(34):7382-7385..
[9] CHEN K, FU Q Q, YE S Y, et al. Multicolor printing using electric-field-responsive and photocurable photonic crystals[J]. Advanced Functional Materials, 2017, 27(43):1702825.
[10] YIN Z, LI H, XU W, et al. Local field modulation induced three-order upconversion enhancement:combining surface plasmon effect and photonic crystal effect[J]. Advanced Materials, 2016,28(13):2518-2525.
[11] GALISTEOLOPEZ J F, IBISATE M, MUONZ A, et al. 3D photonic crystals from highly monodisperse FRET-based red luminescent PMMA spheres[J]. Journal of Materials Chemistry:C, 2015, 3(16):3999-4006.
[12] YABLONOVITCH E, GMITTER T, LEUNG K. Photonic band structure:the face-centered-cubic case employing nonspherical atoms[J]. Physical Review Letters, 1991, 63(18):1950-1953.
[13] HO K M, CHAN C T, SOUKOULIS A C M. Existence of a photonic gap in periodic dielectric structure[J]. Physical Review Letters, 1990, 65(25):3152-3155.
[14] ZHANG J T, CHAO X, LIU X, et al. Two-dimensional array debye ring diffraction protein recognition sensing[J]. Chemical Communications, 2013, 49(56):6337-6339.
[15] YOSHIE T, VUCKOVIC J, SCHERER A, et al. High quality two-dimensional photonic crystal slab cavities[J]. Applied Physics Letters, 2001, 79(26):4289-4291.
[16] KNIGHT J C, BIRHS T A, RUSSELL P ST J, et al. All-silica single-mode optical fiber with photonic crystal cladding:errata[J]. Optics Letters, 1996, 21(19):1547-1549.
[17] BLANCO A, CHOMSKI E, GRABTCHAK S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres[J]. Nature, 2000, 405(6785):437-440.
[18] QIU M, HE S L. Optimal design of a two-dimensional photonic crystal of square lattice with a large complete two-dimensional bandgap[J]. Journal of the Optical Society of America:B, 2000, 17(6):1027-1030.
[19] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability[J]. Soviet Physics Uspekhi,1968, 10(4):509-514.
[20] KOSAKA H, KAWASHIMA T, TOMITA A, et al. Superprism phenomena in photonic crystals[J]. Physical Review:B, 1999, 58(16):10096-10099.
[21] ZHOU L, CHAN C T. Vortex-like surface wave and its role in the transient phenomena of meta-material focusing[J]. Applied Physics Letters, 2005, 86(10):101104.
[22] ZHOU L, CHAN C T. Relaxation mechanisms in three-dimensional metamaterial lens focusing[J]. Optics Letters, 2005, 30(14):1812-1814.
[23] WANG J, YAN M, QIU M,et al. Silicon photonic crystal surface mode microcavities[J]. Frontiers of Physics in China, 2010, 5(3):260-265.
[24] KOSAKA H, KAWASHIMA T, TOMITA A, et al. Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering[J]. Applied Physical Letters, 1999, 74(10):1370-1372.
[25] BABA T, NAKAMURA M. Photonic crystal light deflection devices using the superprism effect[J]. IEEE Journal of Quantum Electronics, 2002, 38(7):909-914.
[26] BABA T, MATSUMOTO T. Light propagation in photonic crystal superprisms[C]//Photonic Crystal Materials & Devices Ⅱ. San Jose, CA:International Society for Optics and Photonics,2004:373-380
[27] MOMENI B, ADIBI A. Preconditioned superprism-based photonic crystal demultiplexers:analysis and design[J]. Applied Optics, 2006, 45(33):8466-8476.
[28] PAULING L. A theory of the structure and process of formation of antibodies[J]. Journal of the American Chemical Society, 1940, 62(10):2643-2657.
[29] DICKEY F H. The preparation of specific adsorbents[J]. Proceedings of the national academy of sciences of the united States of America, 1949, 35(5):227-229.
[30] DICKEY F H. Specific adsorption[J]. Journal of Physical Chemistry, 1955, 59(8):695-707.
[31] WULFF G, SARHAN A.The use of polymers with enzyme-analogous structures for the resolution of racemates[J]. Angewandte Chemie International Edition, 1972, 11(4):341-344.
[32] VLATAKIS G, ANDERSSON L I, MULLER R, et al. Drug assay using antibody mimics made by molecular imprinting[J]. Nature, 1993, 361(6413):645-647.
[33] CHEN L X, XU S F, LI J H. et al. Recent advances in molecular imprinting technology:current status, challenges and highlighted applications[J]. Chemical Society Reviews, 2011, 40(5):2922-2942.
[34] LONG C Y, MAI Z B, YANG Y F, et al. Determination of multi-residue for malachite green, gentian violet and their metabolites in aquatic products by high-performance liquid chromatography coupled with molecularly imprinted solid-phase extraction[J]. Journal of Chromatography:A, 2009, 1216(12):2275-2281.
[35] JIANG T H, ZHAO L X, CHU B L, et al. Molecularly imprinted solid-phase extraction for the selective determination of 17beta-estradiol in fishery samples with high performance liquid chromatography[J]. Talanta, 2009, 78(2):442-447.
[36] ELENA B, MARTINS S, ORELLANA G, et al. Water-compatible molecularly imprinted polymer for the selective recognition of fluoroquinolone antibiotics in biological samples[J]. Analytical and Bioanalytical Chemistry, 2009, 393(1):235-245.
[37] LIANG R N, SONG D A, ZHANG R M, et al. Potentiometric sensing of neutral species based on a uniform-sized molecularly imprinted polymer as a receptor[J]. Angewandte Chemie International Edition, 2010, 49(14):2556-2559.
[38] LAKSHMI D, BOSSI A, WHITCOMBE M J, et al.Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element[J].Analytical Chemistry,2009,81(9):3576-3584.
[39] LU W, XUE M, XU Z B, et al. Molecularly imprinted polymers for the sensing of explosives and chemical warfare agents[J]. Current Organic Chemistry, 2015, 19(1):62-71.
[40] QI M, ZHAO K Y, BAO Q W, et al. Adsorption and electrochemical detection of bovine serum albumin imprinted calcium alginate hydrogel membrane[J]. Polymers, 2019, 11(4):11040622.
[41] LIU D, ZHAO K Y, QI M, et al. Preparation of protein molecular-imprinted polysiloxane membrane using calcium alginate film as matrix and its application for cell culture[J]. Polymers, 2018, 10(2):170-184.
[42] FAN J, WEI Y F, WANG J J, et al. Study of molecularly imprinted solid-phase extraction of diphenylguanidine and its structural analogs[J]. Analytica Chimica Acta, 2009, 639(1):42-50.
[43] 陈诚,董志强,陈昊文,等. 二维光子晶体[J]. 化学进展,2018,30(6):775-784. CHEN C, DONG Z Q, CHEN H W, et al. Two-dimensional photonic crystals[J]. Progress in Chemistry, 2018,30(6):775-784.
[44] GE J P, HU Y X, YIN Y D. Highly tunable superparamagnetic colloidal photonic crystals[J]. Angewandte Chemie International Edition, 2007, 46(39):7428-7431.
[45] GE J P, HU Y X, ZHANG T R, et al. Self-assembly and field-responsive optical diffractions of superparamagnetic colloids[J]. Langmuir, 2008, 24(7):3671-3680.
[46] YABLONOVITCH E, GMITTER T J, LEUNG K M. et al. Photonic band structure:the face-centered-cubic case employing nonspherical atoms[J]. Physical Review Letters, 1991, 67(17):2295-2298.
[47] MCCALL S, PLATZMAN P, DALICHAOUCH R, et al. Microwave propagation in two-dimensional dielectric lattices[J]. Physical Review Letters, 1991, 67(15):2017-2020.
[48] ÖZBAY E, MICHEL E, TUTTLE G, et al. Micromachined millimeter-wave photonic band-gap crystals[J]. Applied physical letters, 1994, 64(16):2059-2061.
[49] GRUNING U, LEHMANN V, OTTOWS S, et al. Macroporous silicon with a complete two-dimensional photonic band gap centered at 5μm[J]. Applied Physics Letters, 1996, 68(6):747-749.
[50] BIRNER A, GRUNING U, OTTOWS S, et al. Macroporous silicon:a two-dimensional photonic bandgap material suitable for the near-infrared spectral range[J]. Physica Status Solidi:A, 1998, 165(1):111-117.
[51] LONCAR M, DOLL T, VUCKOVIC J, et al. Design and fabrication of silicon photonic crystal optical waveguides[J]. Journal of Lightwave Technology, 2000, 18(10):1402-1411.
[52] SOLOMENTSEV Y, MARCEL B, ANDERSON J L. Particle clustering and pattern formation during electrophoretic deposition:a hydrodynamic model[J]. Langmuir, 1997, 13(23):6058-6068.
[53] YE X Z, QI L M. Two-dimensionally patterned nanostructures based on monolayer colloidal crystals:controllable fabrication, assembly, and applications[J]. Nano Today, 2011, 6:608-631.
[54] YE X Z, QI L M. Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas[J]. Science China Chemistry, 2014, 57(1):58-69.
[55] ZHANG J T, WANG L L, LAMONT D N, et al. Fabrication of large-area two-dimensional colloidal crystals[J]. Angewandte Chemie, 2012, 51(25):6117-6120.
[56] ZHANG J T, WANG L L, CHAO X, et al. Periodicity-controlled two-dimensional crystalline colloidal arrays[J]. Langmuir, 2011, 27(24):15230-15235.
[57] VENKATESH S, JIANG P, JIANG B. Generalized fabrication of two-dimensional non-close-packed colloidal crystals[J]. Langmuir, 2007, 23(15):8231-8235.
[58] GRATSON G M, GARCIASANTAMARIA F, LOUSSE V, et al. Direct-write assembly of three-dimensional photonic crystals:conversion of polymer scaffolds to silicon hollow-woodpile structures[J]. Advanced Materials, 2010, 18(4):461-465.
[59] CAMPBELL M,SHARP D N, HARRISON M T, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography[J]. Nature, 2000, 404(6773):53-56.
[60] MIGUEZ H, MESEGUER F, LOPEZ C, et al. Control of the photonic crystal properties of fcc-packed submicrometer SiO2 spheres by sintering[J]. Advanced Materials, 1998, 10(6):480-483.
[61] XIA Y N, GATES B, YIN Y D, et al. Monodispersed colloidal spheres:old materials with new applications[J]. Advanced Materials, 2000, 12(10):693-713.
[62] JIANG P, BERTONE J F, HWANG K S, et al. Single-crystal colloidal multilayers of controlled thickness[J]. Chemistry of Materials. 1999, 11(8):2132-2140.
[63] GU Z Z, FUJISHIMA A, SATO O, et al. Fabrication of high-quality opal films with controllable thickness[J]. Chemistry of Materials, 2002, 14(2):760-765.
[64] KIM M H, IM S H, PARK O O,et al. Rapid fabrication of two- and three-dimensional colloidal crystal films via confined convective assembly[J]. Advanced Functional Materials, 2005, 15(8):1329-1335.
[65] NORRIS D J, ARLINGHAUS E G, MKITAEV V, et al. Self-assembled surface patterns of binary colloidal crystals[J]. Advanced Materials, 2010, 15(1):75-78.
[66] NORRIS D G, ARLINGHAUS E G, LI M, et al. Opaline photonic crystals-how does self-assembly work?[J]. Advanced Materials, 2004, 16:1393-1399.
[67] MEN D D, ZHOU F, HANG L F, et al. A functional hydrogel film attached with a 2D Au nanosphere array and its ultrahigh optical diffraction intensity as a visualized sensor[J]. Journey of Materials Chemistry:C, 2016, 4(11):2117-2122.
[68] 陈小娟,刘根起,任宸锐,等. 磺胺二甲嘧啶分子印迹二维光子晶体水凝胶传感器的研究[J]. 高等学校化学学报, 2018, 39(2):212-218. CHEN X J, LIU G Q, REN C R, et al. Investigation on sulfamethazine molecularly imprinted two-dimensional photonic crystal hydrogel sensor[J].Chemical Journal of Chinese Universities, 2018, 39(2):212-218.
[69] KIM S H, LEE S Y, YI G R, et al. Microwave-assisted self-organization of colloidal particles in confining aqueous droplets[J]. Journal of the American Chemical Society, 2006, 128(33):10897-10904.
[70] LU W, ASHER S A, MENG Z, et al. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal[J]. Journal of Hazardous Materials, 2016, 316:87-93.
[71] HU X B, AN Q, LI G T, et al. Imprinted photonic polymers for chiral recognition[J]. Angewandte Chemie International Edition, 2006, 45(48):8145-8148.
[72] DENG J Z, CHEN S, CHEN J L, et al. Self-reporting colorimetric analysis of drug release by molecular imprinted structural color contact lens[J]. ACS Applied Materials & Interfaces, 2018, 40(10):34611-34617.
[73] MEN D D, ZHANG H H, HANG L F, et al. Optical sensor based on hydrogel films with 2D colloidal arrays attached on both the surfaces:anti-curling performance and enhanced optical diffraction intensity[J]. Journal of Materials Chemistry:C, 2015, 3(15):3659-3665.
[74] LEE Y J, BRAUN P V. Tunable inverse opal hydrogel pH sensors[J]. Advanced Materials, 2003, 15(78):563-566.
[75] FEI X, LU T, MA J, et al. Bioinspired polymeric photonic crystals for high cycling pH-sensing performance[J]. ACS Applied Materials & Interfaces, 2016, 8(40):27091-27098.
[76] LI L, LONG Y, GAO J M, et al. Label-free and pH-sensitive colorimetric materials for the sensing of urea[J]. Nanoscale, 2016, 8(8):4458-4462.
[77] YETISEN A K, MONTELONGO Y, QASIM M M, et al. Photonic nanosensor for colorimetric detection of metal ions[J]. Analytical Chemistry, 2015, 87(10):5101-5108.
[78] XIAO F B, SUN Y F, DU W F, et al. Smart photonic crystal hydrogel material for uranyl ion monitoring and removal in water[J]. Advanced Functional Materials, 2017,27(42):1702147.
[79] ARPIN K A, LOSEGO M D, CLOUD A N, et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification[J]. Nature Communications, 2013, 4(1):2630.
[80] CHEN C, ZHAO X L, LI Z H, et al. Current and emerging technology for continuous glucose monitoring[J]. Sensors, 2017,17(1):17010182.
[81] ZHANG Y Q, FU Q Q, GE J P. Test-paper-like photonic crystal viscometer[J]. Small, 2017, 13:1603351.
[82] ZHU B T, FU Q Q, CHEN K, et al. Liquid photonic crystals for mesopore detection[J]. Angewandte Chemie International Edition, 2017,130(1):258-262.
[83] CHEN G, TANG W W, WANG X H, et al. Application of hydrogels with special physical properties in biomedicine[J]. Polymers, 2019, 11(9):11091420.
[84] LIU F, HUANG S Y, XUE F, et al. Detection of organophosphorus compounds using a molecularly imprinted photonic crystal[J]. Biosensors and Bioelectronics, 2012, 32(1):273-277.
[85] HUANG C, CHENG Y, GAO Z W, et al. Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring[J]. Sensors and Actuators:B, 2018, 273(10):1705-1712.
[86] 孟梁,孟品佳,张庆庆,等.水相分子印迹光子晶体水凝胶传感器检测尿液中的痕量吗啡[J]. 分析化学, 2015, 43(4):495-501. MENG L, MENG P J, ZHANG Q Q, et al. Water-compatible molecularly imprinted photonic hydrogels for fast screening of morphine in urine[J]. Chinese Journal of Analytical Chemistry, 2015, 43(4):495-501.
[87] 顾航,潘彦光,黄振坚,等. 分子印迹光子晶体凝胶传感器检测食品中的防腐剂[J]. 分析测试学报, 2017, 36(8):1023-1028. GU H, PAN Y G, HUANG Z J, et al. Determination of preservatives in food using a molecularly imprinted photonic crystal gel sensor[J]. Journal of Instrumental Analysis, 2017, 36(8):1023-1028.
[88] SAI N, WU Y T, SUN Z, et al. Molecular imprinted opal closest-packing photonic crystals for the detection of trace 17β-estradiol in aqueous solution[J]. Talanta, 2015, 144:157-162.
[89] 秦立彦,施冬健,陈明清,等. 高灵敏比色检测药物分子四环素的分子印迹凝胶光子晶体膜[J]. 功能材料, 2018, 49(7):7138-7143. QIN L Y, SHI D J, CHEN M Q, et al. A Highly sensitive colorimetric molecular imprinted photonic crystal for the detection of tracetetracycline[J]. 2018, 49(7):7138-7143.
[90] YANG Z K, SHI D J, CHEN M Q, et al. Free-standing molecularly imprinted photonic hydrogels based on b-cyclodextrin for the visual detection of L-tryptophan[J]. Analytical Methods, 2015, 7(19):8352-8359.
[91] ZHANG Y N, HUANG S M, QIAN C T, et al. Preparation of cinchonine molecularly imprinted photonic crystal film and its specific recognition and optical responsive properties[J]. Journal of Applied Polymer Science, 2016, 133(11):43191-43199.
[92] WANG X, MU Z D, LIU R, et al. Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid[J]. Food Chemistry, 2013, 141(4):3947-3953.
[93] 张琪,张红,周强,等. 灭多威分子印迹光子晶体传感器的制备及应用[J]. 分析化学, 2019,47(6):883-889. ZHANG Q, ZHANG H, ZHOU Q, et al. Preparation and application of methomyl molecularly imprinted photonic crystal sensor[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6):883-889.
[94] WANG Y F, FAN J, MENG Z H, et al. Fabrication of an antibiotic-sensitive 2D-molecularly imprinted photonic crystal[J]. Analytical Methods, 2019, 11:2875-2879.
[95] YOU A M, CAO Y H, CAO G Q. Colorimetric sensing of melamine using colloidal magnetically assembled molecularly imprinted photonic crystals[J].RSC Advances,2016,6:83663-83667.
[96] YOU A M, NI X J, CAO Y H, et al. Colorimetric chemosensor for chloramphenicol based on colloidal magnetically assembled molecularly imprinted photonic crystals[J]. Journal of the Chinese Chemical Society, 2017, 64(10):1235-1241.
[97] HOU J, ZHANG H C, YANG Q, et al. Hydrophilic-hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline[J]. Small, 2015, 11(23):2738-2742.
[98] YANG Q, PENG H L, LI J H, et al. Label-free colorimetric detection of tetracycline using analyte-responsive inverse-opal hydrogels based on molecular imprinting technology[J]. New Journal of Chemistry, 2017, 41(18):10174-10180.
[99] YANG Z K, SHI D J, CHEN M Q, et al. Free-standing molecularly imprinted photonic hydrogels based on β-cyclodextrin for the visual detection of L-tryptophan[J]. Analytical Methods, 2015,7(19):8352-8359.
[100] CHEN P Y, CHUNG M T, McHUNG W, et al. Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays[J]. ACS Nano, 2015, 9(4):4173-4181.
[101] LIU H L, LIU X L, MENG J X, et al. Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces[J]. Advanced Materials, 2013, 25(6):922-927.
[102] COLLINS B C, GILLET L C, ROSENBERGER G, et al. Quantifying protein interaction dynamics by SWATH mass spectrometry:application to the 14-3-3 system[J]. Nature Methods, 2013, 10(12):1246-1253.
[103] NEMATOLLAHZADEH A, SHOJAEI A, ABDEKHODAIE M J, et al. Molecularly imprinted polydopamine nano-layer on the pore surface of porous particles for protein capture in HPLC column[J]. Journal of Colloid and Interface Science, 2013, 404:117-126.
[104] CHEN W, MENG Z H, XUE M, et al. Molecular imprinted photonic crystal for sensing of biomolecules[J]. Molecular Imprinting,2016, 4(1):1-12.
[105] RUAN J L, CHEN C, SHEN J H, et al. A gelated colloidal crystal attached lens for noninvasive continuous monitoring of tear glucose[J]. Polymers, 2017, 9(4):9040125.
[106] SAI N, NING B, HUANG G, et al. An imprinted crystalline colloidal array chemical-sensing material for detection of trace diethylstilbestrol[J]. Analyst, 2013, 138(9):2720-2728.
[107] CHEN W, LEI W, XUE M, et al. Protein recognition by a surface imprinted colloidal array[J]. Journal of Materials Chemistry:A, 2014, 2(20):7165-7169.
[108] CHEN W, XUE M, SHEA K J, et al. Molecularly imprinted hollow sphere array for the sensing of proteins[J]. Journal of Biophotonics, 2014, 8(10):838-845.
[1] 吴红亚, 杨云, 张光磊, 白洋, 周济. 双曲超材料及其传感器研究进展[J]. 材料工程, 2020, 48(6): 34-42.
[2] 金嘉炜, 李国臣, 张冶, 李公义, 楚增勇. TiO2薄膜型气敏传感器研究进展[J]. 材料工程, 2020, 48(10): 28-38.
[3] 余煜玺, 韩滨. PDC-SiBCN陶瓷基无线无源温度传感器的性能[J]. 材料工程, 2020, 48(1): 121-127.
[4] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[5] 沈小群, 陈李, 李顺波, 徐溢. VOCs传感器敏感膜材料及敏感机理研究进展[J]. 材料工程, 2019, 47(11): 64-70.
[6] 阚侃, 王珏, 付东, Sementsov YURII, 宋美慧, 林雨斐, 史克英. Co3O4中空纳米球的可控制备及气敏性能[J]. 材料工程, 2019, 47(1): 50-57.
[7] 金欣, 畅旭东, 王闻宇, 朱正涛, 林童. 基于聚二甲基硅氧烷柔性可穿戴传感器研究进展[J]. 材料工程, 2018, 46(11): 13-24.
[8] 刘唱白, 刘丽, 刘星熠. Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性[J]. 材料工程, 2017, 45(2): 12-16.
[9] 薄小庆, 刘唱白, 何越, 刘丽, 刘震, 王连元. 多孔纳米棒氧化锌的制备及其气敏特性[J]. 材料工程, 2014, 0(8): 86-89.
[10] 郭贵宝, 王亚雄, 寇沙沙, 胡利杰, 安胜利. 改性聚偏氟乙烯接枝苯乙烯/丙烯酸磺酸电解质膜及其在CO传感器中的应用[J]. 材料工程, 2010, 0(5): 15-19,24.
[11] 李东海, 胡明, 孙凤云, 陈鹏, 孙鹏. 多孔硅气体传感器的制备及其气敏性能的研究[J]. 材料工程, 2009, 0(4): 71-74.
[12] 李昌青, 胡明, 杨海波. 用于MEMS热敏传感器中绝热层的多孔硅性能研究[J]. 材料工程, 2008, 0(8): 9-12.
[13] 董贤子, 赵震声, 段宣明. 周期渐变型准金刚石结构光子晶体的双光子聚合纳米加工技术[J]. 材料工程, 2008, 0(10): 118-121,125.
[14] 姜涛, 吴一平, 陈建国, 胡一帆, 孙培祯. TiO2薄膜型气体传感器研究进展[J]. 材料工程, 1996, 0(5): 24-26,34.
[15] 姜涛, 吴一平, 陈建国, 胡一帆, 孙培祯. TiO2薄膜型气体传感器研究进展[J]. 材料工程, 1996, 0(5): 24-26,34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn