Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (4): 73-82    DOI: 10.11868/j.issn.1001-4381.2019.000698
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于动态化学键构建自愈合高分子水凝胶
候冰娜1, 沈惠玲1, 李进1, 谢旺强1, 李征征1,2,3,4
1. 天津科技大学 化工与材料学院, 天津 300457;
2. 复旦大学 聚合物分子工程国家重点实验室, 上海 200433;
3. 天津科技大学 天津市海洋资源与化学重点实验室, 天津 300457;
4. 天津科技大学 天津市制浆造纸重点实验室, 天津 300457
Self-healing polymer hydrogel based on dynamic chemical bonds
HOU Bing-na1, SHEN Hui-ling1, LI Jin1, XIE Wang-qiang1, LI Zheng-zheng1,2,3,4
1. School of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China;
2. State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China;
3. Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin 300457, China;
4. Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
全文: PDF(4352 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 高分子水凝胶是一种具有三维网络结构的软材料,能够吸收并保持大量的水分。高分子水凝胶具有良好的生物相容性和力学性能,在生物医学和生物工程领域具有重要的应用价值。自愈合水凝胶是一种能够响应外界刺激并修复自身损伤的智能凝胶。相比传统水凝胶,自愈合水凝胶具有修复损伤的特性,近年来受到科学界的广泛关注。基于动态化学的自愈合水凝胶是一种能够通过动态的共价键或非共价键交联而重新形成三维网络结构从而修复损伤的新型自愈合水凝胶,该水凝胶能够快速多次地修复自身损伤,有良好的环境适应性,为开发多功能智能新材料奠定了基础。本文综述了近年来基于动态化学键构建自愈合水凝胶的研究进展,重点阐述了基于氢键相互作用、金属配位相互作用、主-客体相互作用、离子相互作用、亲疏水相互作用、亚胺键/酰腙键、硼酸酯键和二硫键的自愈合水凝胶的最新研究情况,同时提出了自愈合水凝胶的一些问题,并分析了未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
候冰娜
沈惠玲
李进
谢旺强
李征征
关键词 自愈合水凝胶动态化学共价键非共价键    
Abstract:Polymer hydrogel is a soft material with a three-dimensional network structure that can absorb and retain a large amount of water. Polymer hydrogels have good biocompatibility, mechanical properties and important application value in biomedical and bioengineering fields. Self-healing hydrogels are smart hydrogels that respond to external stimuli and repair their own damage. Compared with the traditional hydrogel, the self-healing hydrogel has the property of repairing damage, and received extensive attention in the scientific field in recent years. Dynamic chemistry-based self-healing hydrogels are novel self-healing hydrogels that can reshape three-dimensional network structures by dynamic covalent or non-covalent bonding to repair damage. The new self-healing hydrogel can quickly repair its own damage and has good environmental adaptability, laying the foundation for the development of self-healing hydrogels as multifunctional new materials. The research progress of recent self-healing hydrogels based on dynamic chemistry was reviewed in this paper, especially focusing on the updated development on self-healing hydrogels based on hydrogen bonds, metal coordination interactions, host-guest interactions, ionic bonds, hydrophobic interactions, imine bonds/acylhydrazone bonds, borate bonds and disulphide bonds, and meanwhile, the problem of self-healing hydrogels was put forward, and the future direction of development was finally predicted.
Key wordsself-healing hydrogel    dynamic chemistry    covalent bonding    non-covalent bonding
收稿日期: 2019-07-26      出版日期: 2020-04-23
中图分类号:  O648.17  
通讯作者: 李征征(1984-),女,副研究员,博士,研究方向为智能高分子水凝胶的制备及其生物医用研究,联系地址:天津市滨海新区经济技术开发区第13大街29号天津科技大学泰达校区(300457),E-mail:li.z.z@tust.edu.cn     E-mail: li.z.z@tust.edu.cn
引用本文:   
候冰娜, 沈惠玲, 李进, 谢旺强, 李征征. 基于动态化学键构建自愈合高分子水凝胶[J]. 材料工程, 2020, 48(4): 73-82.
HOU Bing-na, SHEN Hui-ling, LI Jin, XIE Wang-qiang, LI Zheng-zheng. Self-healing polymer hydrogel based on dynamic chemical bonds. Journal of Materials Engineering, 2020, 48(4): 73-82.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000698      或      http://jme.biam.ac.cn/CN/Y2020/V48/I4/73
[1] ASHRAF S, PARK H K, PARK H, et al. Snapshot of phase transition in thermoresponsive hydrogel PNIPAM:role in drug delivery and tissue engineering[J]. Macromolecular Research, 2016, 24(4):297-304.
[2] LI J, GU J, WANG B, et al. Activation of dopamine D1 receptors regulates dendritic morphogenesis through Rac1 and RhoA in prefrontal cortex neurons[J]. Molecular Neurobiology, 2015, 51(3):1024-1037.
[3] KIM K, BAE B, KANG Y J, et al. Natural polypeptide-based supramolecular nanogels for stable noncovalent encapsulation[J]. Biomacromolecules, 2013, 14(10):3515-3522.
[4] MICHELSEN V B, MOE G, JENSEN E, et al. Quantitative analysis of TEGDMA and HEMA eluted into saliva from two dental composites by use of GC/MS and tailor-made internal standards[J]. Dental Materials, 2008, 24(6):724-731.
[5] SACCO P, SECHI A, TREVISAN A, et al. A silver complex of hyaluronan-lipoate (SHLS12):synthesis, characterization and biological properties[J]. Carbohydrate Polymers, 2016, 136:418-426.
[6] 董建成,葛孝栋,王清清,等.阳离子光敏抗菌型水凝胶的制备及性能表征[J].材料工程,2019,47(2):60-65. DONG J C, GE X D, WANG Q Q, et al. Preparation and property characterization of cationic photoantimicrobial hydrogel[J]. Journal of Materials Engineering, 2019, 47(2):60-65.
[7] SUTAR P B, MISHRA R K, PAL K, et al. Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system[J]. Journal of Materials Science Materials in Medicine, 2008, 19(6):2247-2253.
[8] ASSAF S M, ABUL-HAIJA Y M, FARES M M. Versatile pectin grafted poly (N-isopropylacrylamide); modulated targeted drug release[J]. Journal of Macromolecular Science:Part A, 2011, 48(6):493-502.
[9] TOOHEY K S, SOTTOS N R, LEWIS J A, et al. Self-healing materials with microvascular networks[J]. Nature Materials, 2007, 6(8):581-585.
[10] HAMILTON A R, SOTTOS N R, WHITE S R. Self-healing of internal damage in synthetic vascular materials[J]. Advanced Materials, 2010, 22(45):5159-5163.
[11] PATRICK J F, HART K R, KRULL B P, et al. Self-healing:continuous self-healing life cycle in vascularized structural composites[J]. Advanced Materials, 2014, 26(25):4302-4308.
[12] 张亚玲,杨斌,许亮鑫,等.基于动态化学的自愈性水凝胶及其在生物医用材料中的应用研究展望[J].化学学报,2013,71(4):485-492. ZHANG Y L, YANG B, XU L X, et al. Self-healing hydrogels based on dynamic chemistry and their bio-medical applications[J]. Acta Chimica Sinica, 2013, 71(4):485-492.
[13] BLAISZIKl B J, KRAMER S L B, OLUGEBEFOLA S C, et al. Self-healing polymers and composites[J]. Annual Review of Materials Research, 2010, 40(5):179-211.
[14] BROCHU A B W, CRAIG S L, REICHERT W M. Self-healing biomaterials[J]. Journal of Biomedical Materials Research Part A, 2011, 96A (2):492-506.
[15] SAHA S, BACHL J, KUNDU T, et al. Amino acid-based multiresponsive low-molecular weight metallohydrogels with load-bearing and rapid self-healing abilities[J]. Chemical Communications, 2014, 50(23):3004-3006.
[16] HUSSAIN I, SAYED S M, LIU S, et al. Glycogen-based self-healing hydrogels with ultra-stretchable, flexible, and enhanced mechanical properties via sacrificial bond interactions[J]. International Journal of Biological Macromolecules, 2018, 117:648-658.
[17] CAO J, MENG L, ZHENG S, et al. Self-healing supramolecular hydrogels fabricated by cucurbit uril-enhanced π-π interaction[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65(10):537-542.
[18] CAI T, HUO S, WANG T, et al. Self-healable tough supramolecular hydrogels crosslinked by poly-cyclodextrin through host-guest interaction[J]. Carbohydrate Polymers,2018,193:54-61.
[19] TUNCABOYLU D C, SARI M, OPPERMANN W, et al. Tough and self-healing hydrogels formed via hydrophobic interactions[J]. Macromolecules, 2011, 44(12):4997-5005.
[20] JIANG G, LIU C, LIU X, et al. Self-healing mechanism and mechanical behavior of hydrophobic association hydrogels with high mechanical strength[J]. Journal of Macromolecular Science:Part A, 2010, 47(4):335-342.
[21] YUAN N, XU L, XU B, et al. Chitosan derivative-based self-healable hydrogels with enhanced mechanical properties by high-density dynamic ionic interactions[J]. Carbohydrate Polymers, 2018, 193:259-267.
[22] DENG C C, BROOKS W L A, ABBOUD K A, et al. Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH[J]. ACS Macro Letters, 2015, 4(2):220-224.
[23] CASH J J, KUBO T, BAPAT A P, et al. Room-temperature self-healing polymers based on dynamic-covalent boronic esters[J]. Macromolecules, 2015, 48(7):2098-2106.
[24] CANADELL J, GOOSSENS H, KLUMPERMAN B. Self-healing materials based on disulfide links[J]. Macromolecules, 2011, 44(8):2536-2541.
[25] CHENG C, ZHANG X, MENG Y, et al. Multiresponsive and biocompatible self-healing hydrogel:its facile synthesis in water, characterization and properties[J]. Soft Matter, 2017, 13(16):3003-3012.
[26] LIU J, ZHANG X, CHEN X, et al. Stimuli-responsive dendronized polymeric hydrogels through schiff-base chemistry showing remarkable topological effects[J]. Polymer Chemistry, 2018, 9(10):378-387.
[27] XU C, ZHAN W, TANG X, et al. Self-healing chitosan/vanillin hydrogels based on schiff-base bond/hydrogen bond hybrid linkages[J]. Polymer Testing, 2018, 66:155-163.
[28] 张鸿鑫,鲁路,李立华,等. 海藻酸动态共价交联水凝胶的制备及其自愈合性能[J],高分子学报,2016(3):368-374. ZHANG H X, LU L, LI L H, et al. Alginate-based self-healing and pH-responsive hydrogels formed by dynamic covalent bonding[J]. Acta Polymerica Sinica, 2016(3):368-374.
[29] NEAL J, MOZHDEHI D, GUAN Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial non-covalent bonds[J]. Journal of the American Chemical Society, 2015, 137(14):4846-4850.
[30] KUHL N, BODE S, HAGER M D, et al. Self-healing polymers based on reversible covalent bonds[J]. 2015, 25:3295-3352.
[31] RAO Z, INOUE M, MATSUDA M, et al. Quick self-healing and thermo-reversible liposome gel[J]. Colloids and Surfaces:B, 2011, 82(1):196-202.
[32] NOWAK A P, BREEDVELD V, PAKSTIS L, et al. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles[J]. Nature, 2002, 417(6887):424-428.
[33] LI J, MO L, LU C H, et al. Functional nucleic acid based hydrogels for bioanalytical and biomedical applications[J]. Chemical Society Reviews, 2016, 45(5):1410-1431.
[34] SUN J Y, ZHAO X, ILLEPERUMA W R, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414):133-136.
[35] HIDHLEY C B, RODELL C B, BURDICK J A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels[J]. Advanced Materials, 2015, 27(34):5075-5079.
[36] RODELL C B, KAMINSKI A L, BURDICK J A. Rational design of network properties in guest-host assembled and shear-thinning hyaluronic acid hydrogels[J]. Biomacromolecules, 2013, 14(11):4125-4134.
[37] KANG H W, LEE S J, KO I K, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nature Biotechnology, 2016, 34(3):312-319.
[38] GAHARWAR A K, AVERY R K, ASSMANN A, et al. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage[J]. ACS Nano, 2014, 8(10):9833-9842.
[39] HOU S, WANG X, PARK S, et al. Rapid self-integrating, injectable hydrogel for tissue complex regeneration[J]. Advanced Healthcare Materials, 2015, 4(10):1491-1495.
[40] AMEYA P, CHAO Z, BEDRI A, et al. Rapid self-healing hydrogels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12):4383-4388.
[41] HARAGUCHI K, UYAMA K, TANIMOTO H. Self-healing in nanocomposite hydrogels[J]. Macromol Rapid Commun, 2011, 32(16):1253-1258.
[42] ZHANG H, XIA H, ZHAO Y. Poly (vinyl alcohol) hydrogel han autonomously self-heal[J]. ACS Macro Letters, 2012, 1(11):1233-1236.
[43] WANG Y, WANG Z, WU K, et al. Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties[J]. Carbohydrate Polymers, 2017, 168:112-120.
[44] 杨倩,李学锋,龙世军,等.多价金属离子增强琼脂-聚丙烯酸复合双网络水凝胶及其自修复性能[J].复合材料学报,2017,34(7):1416-1422. YANG Q, LI X F, LONG S J, et al. Self-healing properties of various multivalent cations reinforced agar-polyacrylic acid composite double network hydrogels[J]. Acta Materiae Compositae Sinica, 2017, 34(7):1416-1422.
[45] SHI L, HAN Y, HILBORN J, et al. "Smart" drug loaded nanoparticle delivery from a self-healing hydrogel enabled by dynamic magnesium-biopolymer chemistry[J]. Chemical Communications, 2016, 52(74):11151-11154.
[46] JIANG G, LIU C, LIU X, et al. Network structure and compositional effects on tensile mechanical properties of hydrophobic association hydrogels with high mechanical strength[J]. Polymer, 2010, 51(6):1507-1515.
[47] TUNCABOYLU D C, ARGUN A, SAHIN M, et al. Structure optimization of self-healing hydrogels formed via hydrophobic interactions[J]. Polymer, 2012, 53(24):5513-5522.
[48] TAKASHIMA Y, HATANAKA S, OTSUBO M, et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions[J]. Nature Communications, 2012, 3(1):1270-1277.
[49] WANG Z, REN Y, ZHU Y, et al. A novel rapidly self-healing host-guest supramolecular hydrogel with high mechanical strength and excellent biocompatibility[J]. Angewandte Chemie International Edition, 2018, 57(29):9008-9012.
[50] RODELL C B, WADE R J, PURCELL B P, et al. Selective proteolytic degradation of guest-host assembled, injectable hyaluronic acid hydrogels[J]. ACS Biomaterials Science and Engineering, 2015, 1(4):277-286.
[51] LIU X, ZHONG M, SHI F, et al. Multi-bond network hydrogels with robust mechanical and self-healable properties[J]. Polymer Science, 2017, 35(10):1253-1267.
[52] GUO Y, ZHOU X, TANG Q, et al. Self-healable and easy-recyclable supramolecular hydrogel electrolyte for flexible supercapacitors[J]. J Mater Chem:A, 2016, 4:8769-8776.
[53] LU S, GAO C, XU X, et al. Injectable and self-healing carbohydrate-based hydrogel for cell encapsulation[J]. ACS Applied Materials and Interfaces, 2015, 7(23):13029-13037.
[54] WEI Z, YANG J H, LIU Z Q, et al. Novel biocompatible polysaccharide-based self-healing hydrogel[J]. Advanced Functional Materials, 2015, 25(9):1352-1359.
[55] QIAO L, LIU C, LIU C, et al. Self-healing alginate hydrogel based on dynamic acylhydrazone and multiple hydrogen bonds[J]. Journal of Materials Science, 2019, 160:246-253.
[56] CHEN W P, HAO D Z, HAO W J, et al. Hydrogel with ultra-fast self-healing property both in air and underwater[J]. ACS Applied Materials and Interfaces, 2017, 10(1):1258-1265.
[57] CHEN Q, ZHU L, ZHAO C, et al. A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide[J]. Advanced Materials, 2013, 25(30):4171-4176.
[58] ZHU P, HU M, DENG Y, et al. One-pot fabrication of a novel agar-polyacrylamide/graphene oxide nanocomposite double network hydrogel with high mechanical properties[J]. Advanced Engineering Materials, 2016, 18(10):1799-1807.
[59] LV Y, PAN Z, SONG C, et al. Locust bean gum/gellan gum double-network hydrogels with superior self-healing and pH-driven shape-memory properties[J]. Soft Matter, 2019, 15(30):6171-6179.
[60] KEMP M, GO Y M, JONES D P. Nonequilibrium thermodynamics of thiol/disulfide redox systems:a perspective on redox systems biology[J]. Free Radical Biology and Medicine, 2008, 44(6):921-937.
[61] BLACK S P, SANDERS J K STEFANKIEWICZ A R. Disulfide exchange:exposing supramolecular reactivity through dynamic covalent chemistry[J]. Chemical Society Reviews, 2014, 43(6):1861-1872.
[62] BANG E K, LISTA M, SFORAZZINI G,et al.Poly(disulfide)s[J]. Chemical Science, 2012, 3(6):1752-1763.
[63] MICHAL B T, JAYE C A, SPENCER E J, et al. Inherently photohealable and thermal shape-memory polydisulfide networks[J]. ACS Macro Letters, 2013, 2(8):694-699.
[64] YOON J A, KAMADA J, KOYNOV K, et al. Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy[J]. Macromolecules, 2012, 45(1):142-149.
[65] BARCAN G A, ZHANG X, WAYMOUTH R M. Structurally dynamic hydrogels derived from 1, 2-dithiolanes[J]. Journal of the American Chemical Society, 2015, 137(17):5650-5653.
[66] DENG G, LI F, YU H, et al. Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions[J]. ACS Macro Letters, 2012, 1(2):275-279.
[1] 王昊, 张辉, 张继华, 赵云峰. 非共价键表面修饰的石墨烯/聚合物复合材料研究进展[J]. 材料工程, 2018, 46(7): 44-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn