Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (5): 31-40    DOI: 10.11868/j.issn.1001-4381.2019.000210
  综述 本期目录 | 过刊浏览 | 高级检索 |
多孔金属流场双极板研究进展
李伟1, 李争显1,2,*(), 刘林涛2, 耿娟娟3, 相远帆3, 王凯凯3
1 西安建筑科技大学 冶金学院, 西安 710055
2 西北有色金属研究院, 西安 710016
3 东北大学 材料科学与工程学院, 沈阳 110004
Recent progress of porous metal filed in bipolar plate
Wei LI1, Zheng-xian LI1,2,*(), Lin-tao LIU2, Juan-juan GENG3, Yuan-fan XIANG3, Kai-kai WANG3
1 School of Metallurgy, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Northwest Institute of Nonferrous Metals Research, Xi'an 710016, China
3 School of Materials Science and Engineering, Northeastern University, Shenyang 110004, China
全文: PDF(4904 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

多孔金属是一种兼具结构与功能的材料,得益于其低密度、高孔隙率、可控渗透性的优点,在许多领域都有广泛应用。本文综述了多孔金属在质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)双极板流场中的研究进展,相较于传统流道流场,高开孔率(>70%)的多孔金属具有相互连通的三维立体结构,可以增加气体分布均匀性、并加强气体传质、增强电子和热的传导及水的排出,从而对电池性能有较大提升。同时探讨多孔金属参数、流场结构设计、服役参数目和多孔材料本身对多孔金属流场在PEMFC应用中的影响。目前阻碍多孔金属在PEMFC应用的最大问题是腐蚀,且多孔金属内部结构复杂对涂层制备工艺提出更大挑战,因此如何有效解决多孔金属在PEMFC两极环境中的腐蚀问题,对推进多孔金属在燃料电池领域中的应用意义重大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李伟
李争显
刘林涛
耿娟娟
相远帆
王凯凯
关键词 多孔金属流场双极板氢燃料电池耐蚀性    
Abstract

Porous metal is a material that combines both structural and functional properties. It is widely used in various fields due to its low density, high porosity and controlled permeability. In this paper, the application progress of porous metal on the flow field of bipolar plates in proton exchange membrane fuel cell (PEMFC) was reviewed. Compared with the traditional flow channel, the high open porosity (>70%) porous metal has three-dimensional structure connected with each other, which can increase the uniformity of gas distribution, enhance gas mass transfer, enhance electron/heat conduction and water discharge, so eventually improve battery performance. In addition, the effects of porous metal parameters, flow field structure design, service parameters and materials on porous metal flow field in PEMFC applications were explored. At present, the biggest problem that hinders the application of porous metal in PEMFC is corrosion, and more challenges must be faced on the coating preparation process for the complex internal structure of porous metal. Therefore, how to effectively solve the corrosion problem of porous metal in PEMFC environment, which have great significance to promote the application of porous metal in fuel cell field.

Key wordsporous metal flow filed    bipolar plate    hydrogen fuel cell    corrosion resistance
收稿日期: 2019-03-08      出版日期: 2020-05-28
中图分类号:  TN249  
基金资助:陕西省创新人才计划项目(2017CKT-06);科技部国际合作项目(2014DFR50450)
通讯作者: 李争显     E-mail: lzxqy725@163.com
作者简介: 李争显(1962-), 男, 教授级高工, 博士, 研究方向为腐蚀与防护, 联系地址:陕西省西安市未央路96号西北有色金属研究院(710016), E-mail:lzxqy725@163.com
引用本文:   
李伟, 李争显, 刘林涛, 耿娟娟, 相远帆, 王凯凯. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48(5): 31-40.
Wei LI, Zheng-xian LI, Lin-tao LIU, Juan-juan GENG, Yuan-fan XIANG, Kai-kai WANG. Recent progress of porous metal filed in bipolar plate. Journal of Materials Engineering, 2020, 48(5): 31-40.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000210      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/31
Fig.1  蛇形流场(a)和多孔金属流场(b)单电池结构示意图[16]
(SPFF-多孔金属流场;aGC-阳极气体流道;aGDL-阳极气体扩散层;aCL-阳极催化层;cCL-阴极催化层;cGC-阴极气体流道;MFFF-多孔金属流场;aMetal foam-阳极多孔金属;cMetal foam-阴极多孔金属)
Fig.2  孔径对流场压力降的影响[15]
PPI(pore per inch) Porosity/% Cell diameter/mm Thickness/mm
10 92.9 4.23 3, 6, 9, 12, 16, 22, 25, 31, 34, 47, 63, 75, 91, 123, 179, 242, 305, 356, 106, 508
20 92.5 2.12 3, 8, 11, 17, 20, 23, 26, 29, 43, 58, 72, 86, 100, 172, 242
40 93.5 1.06 2, 4, 6, 10, 12, 20, 24, 30, 41, 50, 60, 70, 80, 130, 171
Table 1  多孔铝参数[18]
Fig.3  10 PPI不同厚度的多孔铝[18]
Fig.4  渗透率对电流密度(a)[13]和气体消耗量(b)[21]的影响
Fig.5  不同流场结构[25]
Fig.6  4种进气方式流场结构[26]
Fig.7  多孔流场图片(a)及其在受压和低加湿条件下示意图(b)[31]
Fig.8  金属泡沫(a), (c)和平行流通道(b), (d)的冷启动过程中电流密度、电池电压、发热率和电池温度的变化[36]
Metal foam flow field Conventional flow field
Inlet
pressure/MPa
Pressure
drop/Pa
Water content
of membrane/
(mol·m-3)
Oxygen concentration in
the cathode of CLs/
(mol·m-3)
Pressure
drop/Pa
Water content
of membrane/
(mol·m-3)
Oxygen concentration in
the cathode of CLs/
(mol·m-3)
0.1 4220 6.768 Max:5.713Min:1.462 8757 5.910 Max:5.966Min:0.241
0.2 783 8.863 Max:12.674Min:3.611 1547 8.290 Max:13.001Min:1.335
Table 2  多孔金属流场和传统流场性能比较[16]
1 LEE S H , WOO S P , KAKATI N , et al. Corrosion and electrical properties of carbon/ceramic multilayer coated on stainless steel bipolar plates[J]. Surface & Coatings Technology, 2016, 303 (15): 162- 169.
2 ASRI N F , HUSAINI T , SULONG A B , et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC:a review[J]. International Journal of Hydrogen Energy, 2017, 42 (14): 9135- 9148.
doi: 10.1016/j.ijhydene.2016.06.241
3 肖宽, 潘牧, 詹志刚, 等. PEMFC双极板流场结构研究现状[J]. 电源技术, 2018, 42 (1): 153- 156.
doi: 10.3969/j.issn.1002-087X.2018.01.045
3 XIAO K , PAN M , ZHAN Z G , et al. Research status of bipolar plate flow field structure of PEMFC[J]. Chinese Journal of Power Sources, 2018, 42 (1): 153- 156.
doi: 10.3969/j.issn.1002-087X.2018.01.045
4 KAHRAMAN H , ORHAN M F . Flow field bipolar plates in a proton exchange membrane fuel cell:analysis & modeling[J]. Energy Conversion & Management, 2017, 133, 363- 384.
5 WANG C T , OU Y T , WU B X , et al. A modified serpentine flow slab for in proton exchange membrane fuel cells (PEMFCs)[J]. Energy Procedia, 2017, 142, 667- 673.
doi: 10.1016/j.egypro.2017.12.110
6 KIM M E , KIM C S , SOHN Y J . A study on performance of polymer electrolyte membrane fuel cell using metal foam[J]. 2015, 26 (6): 554- 559.
7 KONNO N , MIZUNO S , NAKAJI H , et al. Development of compact and high-performance fuel cell stack[J]. Sae International Journal of Alternative Powertrains, 2015, 4 (1): 123- 129.
doi: 10.4271/2015-01-1175
8 CHEN L J , LI T , LI Y M , et al. Porous titanium implants fabricated by metal injection molding[J]. Transactions of Nonferrous Metals Society of China, 2009, 19 (5): 1174- 1179.
doi: 10.1016/S1003-6326(08)60424-0
9 LEFEBVRE L P , BANHART J , DUNAND D C . Porous metals and metallic foams:current status and recent developments[J]. Advanced Engineering Materials, 2008, 10 (9): 775- 787.
doi: 10.1002/adem.200800241
10 YUAN W , TANG Y , YANG X , et al. Porous metal materials for polymer electrolyte membrane fuel cells-a review[J]. Applied Energy, 2012, 94 (2): 309- 329.
11 HOSSAIN M S , SHABANI B . Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 295, 275- 291.
doi: 10.1016/j.jpowsour.2015.07.022
12 TETUKO A P , KHAERUDINI D S , MULJADI , et al. Heat transfer analysis of metal foam as replacement for flow field plate material in fuel cell system[J]. Journal on Science and Technolgy for Development, 2010, 27 (1): 30- 38.
13 KUMAR A , REDDY R G . Polymer electrolyte membrane fuel cell with metal foam in the gas flow-field of bipolar/end plates[J]. Journal of New Materials for Electrochemical Systems, 2003, (6): 231- 236.
14 YUAN W , TANG Y , YANG X J , et al. Manufacture, characterization and application of porous metal-fiber sintered felt used as mass-transfer controlling medium for direct methanol fuel cells[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (7): 2085- 2093.
doi: 10.1016/S1003-6326(13)62700-4
15 SHIN D K , YOO J H , KANG D G , et al. Effect of cell size in metal foam inserted to the air channel of polymer electrolyte membrane fuel cell for high performance[J]. Renewable Energy, 2018, 115, 663- 675.
doi: 10.1016/j.renene.2017.08.085
16 JO A , JU H . Numerical study on applicability of metal foam as flow distributor in polymer electrolyte fuel cells (PEFCs)[J]. International Journal of Hydrogen Energy, 2018, 43, 1- 15.
doi: 10.1016/j.ijhydene.2017.10.178
17 DIANI A , BODLA K K , ROSSETTO L , et al. Numerical analysis of air flow through metal foams[J]. Energy Procedia, 2014, 45, 645- 652.
doi: 10.1016/j.egypro.2014.01.069
18 DUKHAN N , PATEL K . Effect of sample's length on flow properties of open-cell metal foam and pressure-drop correlations[J]. Journal of Porous Materials, 2011, 18 (6): 655- 665.
doi: 10.1007/s10934-010-9423-z
19 HOSSAIN M S , SHABANI B . Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 295, 275- 291.
doi: 10.1016/j.jpowsour.2015.07.022
20 KUMAR A , REDDY R G . Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates[J]. Journal of Power Sources, 2003, (114): 54- 62.
21 HONTAÑÓN E , ESCUDERO M J , BAUTISTA C , et al. Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques[J]. Journal of Power Sources, 2000, 86 (1): 363- 368.
22 MUTHUKUMAR M , KARTHIKEYAN P , LAKSHMINA-RAYANAN V , et al. Performance studies on PEM fuel cell with 2, 3 and 4 pass serpentine flow field designs[J]. Applied Mechanics and Materials, 2014, 592, 1728- 1732.
23 SUI Y , TEO C J , LEE P S . Direct numerical simulation of fluid flow and heat transfer in periodic wavy channels with rectangular cross-sections[J]. International Journal of Heat and Mass Transfer, 2012, 55 (1/3): 73- 88.
24 FONTANA É , MANCUSI E , SILVA A , et al. Study of the effects of flow channel with non-uniform cross-sectional area on PEMFC species and heat transfer[J]. International Journal of Heat & Mass Transfer, 2011, 54 (21/22): 4462- 4472.
25 TSAI B T , TSENG C J , LIU Z S , et al. Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor[J]. International Journal of Hydrogen Energy, 2012, 37 (17): 13060- 13066.
doi: 10.1016/j.ijhydene.2012.05.008
26 BAROUTAJI A , CARTON J G , OLABI A G . Design and development of proton exchange membrane fuel cell using open pore cellular foam as flow plate material[J]. Journal of Energy Challenges & Mechanics, 2014, 1 (2): 95- 102.
27 TANG H , QI Z , RAMANI M , et al. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode[J]. Journal of Power Sources, 2006, 158 (2): 1306- 1312.
doi: 10.1016/j.jpowsour.2005.10.059
28 SHEN Q , HOU M , LIANG D , et al. Study on the processes of start-up and shutdown in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 189 (2): 1114- 1119.
doi: 10.1016/j.jpowsour.2008.12.075
29 WU J , XIAO Z Y , MARTIN J J , et al. A review of PEM fuel cell durability:degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2008, 184 (1): 104- 119.
doi: 10.1016/j.jpowsour.2008.06.006
30 张剑波, 黄福森, 黄俊, 等. 质子交换膜燃料电池零下冷启动研究进展[J]. 化学通报, 2017, 80 (6): 507- 516.
30 ZHANG J B , HUANG F S , HUANG J , et al. A review on subzero startup of proton exchange membrane fuel cell[J]. Chemistry, 2017, 80 (6): 507- 516.
31 AHN C Y , LIM M S , HWANG W , et al. Effect of porous metal flow field in polymer electrolyte membrane fuel cell under pressurized condition[J]. Fuel Cells, 2017, 17 (5): 652- 661.
doi: 10.1002/fuce.201700042
32 LUO Y , JIAO K . Cold start of proton exchange membrane fuel cell[J]. Progress in Energy & Combustion Science, 2018, 6, 29- 61.
33 OSZCIPOK M , ALINK R . Freeze operational conditions[J]. Molecular Sciences and Chemical Engineering, 2012, 18, 825- 834.
34 LUO Y , GUO Q , DU Q , et al. Analysis of cold start processes in proton exchange membrane fuel cell stacks[J]. Journal of Power Sources, 2013, 224, 99- 114.
doi: 10.1016/j.jpowsour.2012.09.089
35 GWAK G , KO J , JU H . Numerical investigation of cold-start behavior of polymer-electrolyte fuel-cells from subzero to normal operating temperatures-effects of cell boundary and operating conditions[J]. International Journal of Hydrogen Energy, 2014, 39 (36): 21927- 21937.
doi: 10.1016/j.ijhydene.2014.03.143
36 HUO S , COOPER N J , SMITH T L , et al. Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor[J]. Applied Energy, 2017, 203, 101- 114.
doi: 10.1016/j.apenergy.2017.06.028
37 袁伟.被动式直接甲醇燃料电池结构优化设计及作用机理研究[D].广州: 华南理工大学, 2012.
37 YUAN W. Structural optimization of the passive direct methanol fuel cell and mechanism analysis[D]. Guangzhou: South China University of Technology, 2012.
38 TAHERIAN R . A review of composite and metallic bipolar plates in proton exchange membrane fuel cell:materials, fabrication, and material selection[J]. Journal of Power Sources, 2014, 265 (1): 370- 390.
39 INABA M , KINUMOTO T , KIRIAKE M , et al. Gas crossover and membrane degradation in polymer electrolyte fuel cells[J]. Electrochimica Acta, 2006, 51 (26): 5746- 5753.
doi: 10.1016/j.electacta.2006.03.008
40 BOZZINI B , GIANONCELLI A , KAULICH B , et al. Metallic plate corrosion and uptake of corrosion products by nafion in polymer electrolyte membrane fuel cells[J]. Chemsuschem, 2010, 3 (7): 846- 850.
doi: 10.1002/cssc.201000048
41 LI H , KNIGHTS S , SHI Z , et al. Proton exchange membrane fuel cells:contamination and mitigation strategies[J]. Tetrahedron, 2010, 69 (40): 8612- 8617.
42 MYO E K , CHANG S KI , YOUNG J S , et al. A study on performance of polymer electrolyte membrane fuel cell using metal foam[J]. Korean Hydrogen and New Energy Society, 2015, 12 (6): 554- 559.
43 LEE Y H , LI S M , TSENG C J , et al. Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42 (34): 22201- 22207.
doi: 10.1016/j.ijhydene.2017.03.233
44 TABE Y , NASU T , MORIOKA S , et al. Performance characteristics and internal phenomena of polymer electrolyte membrane fuel cell with porous flow field[J]. Journal of Power Sources, 2013, 238 (28): 21- 28.
45 TSENG C J , TSAI B T , LIU Z S , et al. A PEM fuel cell with metal foam as flow distributor[J]. Energy Conversion & Management, 2012, 62 (4): 14- 21.
46 BAROUTAJI A , CARTON J G , STOKES J , et al. Application of open pore cellular foam for air breathing PEM fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42 (40): 25630- 25638.
doi: 10.1016/j.ijhydene.2017.05.114
47 REN Y J , ANISUR M R , QIU W , et al. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment:electrochemical impedance spectroscopy study[J]. Journal of Power Sources, 2017, 362, 366- 372.
doi: 10.1016/j.jpowsour.2017.07.041
48 PU N W , SHI G N , LIU Y M , et al. Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates[J]. Journal of Power Sources, 2015, 282, 248- 256.
doi: 10.1016/j.jpowsour.2015.02.055
49 STOOT A C , CAMILLI L , SPIEGELHAUER S A , et al. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2015, 293, 846- 851.
doi: 10.1016/j.jpowsour.2015.06.009
50 王耀奇, 刘培生, 侯红亮, 等. 泡沫钛孔隙结构及力学性能[J]. 稀有金属材料与工程, 2017, 46 (1): 134- 138.
50 WANG Y Q , LIU P S , HOU H L , et al. Pore structure and mechanical properties of titanium foam[J]. Rare Met Mater Eng, 2017, 46 (1): 134- 138.
[1] 陈高红, 张月, 李应权, 刘建华, 于美. 缓蚀剂组合的容器负载方式对铝合金涂层耐蚀性能的影响[J]. 材料工程, 2022, 50(2): 153-163.
[2] 孙辉, 武会宾, 张游游, 袁睿, 张志慧. Cr含量对CrMnFeNi系高熵合金腐蚀行为的影响[J]. 材料工程, 2022, 50(11): 127-134.
[3] 蒋诗语, 袁媛, 陈涛, 谷达冲. 元素固溶与析出对镁合金耐蚀性影响的研究进展[J]. 材料工程, 2021, 49(12): 40-47.
[4] 孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
[5] 唐全, 张锁德, 徐民, 王建强. 陶瓷颗粒添加对热喷涂不锈钢涂层耐蚀性的影响[J]. 材料工程, 2021, 49(11): 125-135.
[6] 杜春燕, 赵晖, 赵海涛. 纯钛表面载银微弧氧化陶瓷膜的制备及性能[J]. 材料工程, 2020, 48(8): 157-162.
[7] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[8] 徐小宁, 何保军, 张国鹏, 刘忠侠, 张国涛. KH560处理对Al-Al2O3-硅烷复合涂层耐蚀性的影响[J]. 材料工程, 2020, 48(5): 151-159.
[9] 范淑敏, 陈送义, 张星临, 周亮, 黄兰萍, 陈康华. 多级时效热处理对7056铝合金析出组织与耐蚀性的影响[J]. 材料工程, 2019, 47(6): 136-143.
[10] 鲍亚运, 纪秀林, 姬翠翠, 赵建华, 程江波, 徐霖. 激光熔覆FeCrNiCoCuAlx高熵合金涂层的耐腐蚀与抗冲蚀性能[J]. 材料工程, 2019, 47(11): 141-147.
[11] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
[12] 杨慧慧, 杨晶晶, 喻寒琛, 王泽敏, 曾晓雁. 激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8): 127-133.
[13] 郑欢欢, 刘鑫禹, 陈亚楠, 张从林, 吕鹏, 蔡杰, 关庆丰. 20钢强流脉冲电子束表面合金化的微观组织和性能[J]. 材料工程, 2018, 46(7): 127-135.
[14] 刘军, 张金玲, 渠治波, 于彦冲, 许并社, 王社斌. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程, 2018, 46(6): 73-79.
[15] 唐仕光, 陈泉志, 蒋智秋, 童庆, 董婉冰, 李伟洲. 激光重熔处理对铝合金微弧氧化膜组织与性能的影响[J]. 材料工程, 2018, 46(12): 157-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn