1 School of Metallurgy, Xi'an University of Architecture and Technology, Xi'an 710055, China 2 Northwest Institute of Nonferrous Metals Research, Xi'an 710016, China 3 School of Materials Science and Engineering, Northeastern University, Shenyang 110004, China
Porous metal is a material that combines both structural and functional properties. It is widely used in various fields due to its low density, high porosity and controlled permeability. In this paper, the application progress of porous metal on the flow field of bipolar plates in proton exchange membrane fuel cell (PEMFC) was reviewed. Compared with the traditional flow channel, the high open porosity (>70%) porous metal has three-dimensional structure connected with each other, which can increase the uniformity of gas distribution, enhance gas mass transfer, enhance electron/heat conduction and water discharge, so eventually improve battery performance. In addition, the effects of porous metal parameters, flow field structure design, service parameters and materials on porous metal flow field in PEMFC applications were explored. At present, the biggest problem that hinders the application of porous metal in PEMFC is corrosion, and more challenges must be faced on the coating preparation process for the complex internal structure of porous metal. Therefore, how to effectively solve the corrosion problem of porous metal in PEMFC environment, which have great significance to promote the application of porous metal in fuel cell field.
Oxygen concentration in the cathode of CLs/ (mol·m-3)
Pressure drop/Pa
Water content of membrane/ (mol·m-3)
Oxygen concentration in the cathode of CLs/ (mol·m-3)
0.1
4220
6.768
Max:5.713Min:1.462
8757
5.910
Max:5.966Min:0.241
0.2
783
8.863
Max:12.674Min:3.611
1547
8.290
Max:13.001Min:1.335
Table 2 多孔金属流场和传统流场性能比较[16]
1
LEE S H , WOO S P , KAKATI N , et al. Corrosion and electrical properties of carbon/ceramic multilayer coated on stainless steel bipolar plates[J]. Surface & Coatings Technology, 2016, 303 (15): 162- 169.
2
ASRI N F , HUSAINI T , SULONG A B , et al. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC:a review[J]. International Journal of Hydrogen Energy, 2017, 42 (14): 9135- 9148.
doi: 10.1016/j.ijhydene.2016.06.241
XIAO K , PAN M , ZHAN Z G , et al. Research status of bipolar plate flow field structure of PEMFC[J]. Chinese Journal of Power Sources, 2018, 42 (1): 153- 156.
doi: 10.3969/j.issn.1002-087X.2018.01.045
4
KAHRAMAN H , ORHAN M F . Flow field bipolar plates in a proton exchange membrane fuel cell:analysis & modeling[J]. Energy Conversion & Management, 2017, 133, 363- 384.
5
WANG C T , OU Y T , WU B X , et al. A modified serpentine flow slab for in proton exchange membrane fuel cells (PEMFCs)[J]. Energy Procedia, 2017, 142, 667- 673.
doi: 10.1016/j.egypro.2017.12.110
6
KIM M E , KIM C S , SOHN Y J . A study on performance of polymer electrolyte membrane fuel cell using metal foam[J]. 2015, 26 (6): 554- 559.
7
KONNO N , MIZUNO S , NAKAJI H , et al. Development of compact and high-performance fuel cell stack[J]. Sae International Journal of Alternative Powertrains, 2015, 4 (1): 123- 129.
doi: 10.4271/2015-01-1175
8
CHEN L J , LI T , LI Y M , et al. Porous titanium implants fabricated by metal injection molding[J]. Transactions of Nonferrous Metals Society of China, 2009, 19 (5): 1174- 1179.
doi: 10.1016/S1003-6326(08)60424-0
9
LEFEBVRE L P , BANHART J , DUNAND D C . Porous metals and metallic foams:current status and recent developments[J]. Advanced Engineering Materials, 2008, 10 (9): 775- 787.
doi: 10.1002/adem.200800241
10
YUAN W , TANG Y , YANG X , et al. Porous metal materials for polymer electrolyte membrane fuel cells-a review[J]. Applied Energy, 2012, 94 (2): 309- 329.
11
HOSSAIN M S , SHABANI B . Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 295, 275- 291.
doi: 10.1016/j.jpowsour.2015.07.022
12
TETUKO A P , KHAERUDINI D S , MULJADI , et al. Heat transfer analysis of metal foam as replacement for flow field plate material in fuel cell system[J]. Journal on Science and Technolgy for Development, 2010, 27 (1): 30- 38.
13
KUMAR A , REDDY R G . Polymer electrolyte membrane fuel cell with metal foam in the gas flow-field of bipolar/end plates[J]. Journal of New Materials for Electrochemical Systems, 2003, (6): 231- 236.
14
YUAN W , TANG Y , YANG X J , et al. Manufacture, characterization and application of porous metal-fiber sintered felt used as mass-transfer controlling medium for direct methanol fuel cells[J]. Transactions of Nonferrous Metals Society of China, 2013, 23 (7): 2085- 2093.
doi: 10.1016/S1003-6326(13)62700-4
15
SHIN D K , YOO J H , KANG D G , et al. Effect of cell size in metal foam inserted to the air channel of polymer electrolyte membrane fuel cell for high performance[J]. Renewable Energy, 2018, 115, 663- 675.
doi: 10.1016/j.renene.2017.08.085
16
JO A , JU H . Numerical study on applicability of metal foam as flow distributor in polymer electrolyte fuel cells (PEFCs)[J]. International Journal of Hydrogen Energy, 2018, 43, 1- 15.
doi: 10.1016/j.ijhydene.2017.10.178
17
DIANI A , BODLA K K , ROSSETTO L , et al. Numerical analysis of air flow through metal foams[J]. Energy Procedia, 2014, 45, 645- 652.
doi: 10.1016/j.egypro.2014.01.069
18
DUKHAN N , PATEL K . Effect of sample's length on flow properties of open-cell metal foam and pressure-drop correlations[J]. Journal of Porous Materials, 2011, 18 (6): 655- 665.
doi: 10.1007/s10934-010-9423-z
19
HOSSAIN M S , SHABANI B . Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2015, 295, 275- 291.
doi: 10.1016/j.jpowsour.2015.07.022
20
KUMAR A , REDDY R G . Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates[J]. Journal of Power Sources, 2003, (114): 54- 62.
21
HONTAÑÓN E , ESCUDERO M J , BAUTISTA C , et al. Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques[J]. Journal of Power Sources, 2000, 86 (1): 363- 368.
22
MUTHUKUMAR M , KARTHIKEYAN P , LAKSHMINA-RAYANAN V , et al. Performance studies on PEM fuel cell with 2, 3 and 4 pass serpentine flow field designs[J]. Applied Mechanics and Materials, 2014, 592, 1728- 1732.
23
SUI Y , TEO C J , LEE P S . Direct numerical simulation of fluid flow and heat transfer in periodic wavy channels with rectangular cross-sections[J]. International Journal of Heat and Mass Transfer, 2012, 55 (1/3): 73- 88.
24
FONTANA É , MANCUSI E , SILVA A , et al. Study of the effects of flow channel with non-uniform cross-sectional area on PEMFC species and heat transfer[J]. International Journal of Heat & Mass Transfer, 2011, 54 (21/22): 4462- 4472.
25
TSAI B T , TSENG C J , LIU Z S , et al. Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor[J]. International Journal of Hydrogen Energy, 2012, 37 (17): 13060- 13066.
doi: 10.1016/j.ijhydene.2012.05.008
26
BAROUTAJI A , CARTON J G , OLABI A G . Design and development of proton exchange membrane fuel cell using open pore cellular foam as flow plate material[J]. Journal of Energy Challenges & Mechanics, 2014, 1 (2): 95- 102.
27
TANG H , QI Z , RAMANI M , et al. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode[J]. Journal of Power Sources, 2006, 158 (2): 1306- 1312.
doi: 10.1016/j.jpowsour.2005.10.059
28
SHEN Q , HOU M , LIANG D , et al. Study on the processes of start-up and shutdown in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 189 (2): 1114- 1119.
doi: 10.1016/j.jpowsour.2008.12.075
29
WU J , XIAO Z Y , MARTIN J J , et al. A review of PEM fuel cell durability:degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2008, 184 (1): 104- 119.
doi: 10.1016/j.jpowsour.2008.06.006
ZHANG J B , HUANG F S , HUANG J , et al. A review on subzero startup of proton exchange membrane fuel cell[J]. Chemistry, 2017, 80 (6): 507- 516.
31
AHN C Y , LIM M S , HWANG W , et al. Effect of porous metal flow field in polymer electrolyte membrane fuel cell under pressurized condition[J]. Fuel Cells, 2017, 17 (5): 652- 661.
doi: 10.1002/fuce.201700042
32
LUO Y , JIAO K . Cold start of proton exchange membrane fuel cell[J]. Progress in Energy & Combustion Science, 2018, 6, 29- 61.
33
OSZCIPOK M , ALINK R . Freeze operational conditions[J]. Molecular Sciences and Chemical Engineering, 2012, 18, 825- 834.
34
LUO Y , GUO Q , DU Q , et al. Analysis of cold start processes in proton exchange membrane fuel cell stacks[J]. Journal of Power Sources, 2013, 224, 99- 114.
doi: 10.1016/j.jpowsour.2012.09.089
35
GWAK G , KO J , JU H . Numerical investigation of cold-start behavior of polymer-electrolyte fuel-cells from subzero to normal operating temperatures-effects of cell boundary and operating conditions[J]. International Journal of Hydrogen Energy, 2014, 39 (36): 21927- 21937.
doi: 10.1016/j.ijhydene.2014.03.143
36
HUO S , COOPER N J , SMITH T L , et al. Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor[J]. Applied Energy, 2017, 203, 101- 114.
doi: 10.1016/j.apenergy.2017.06.028
37
袁伟.被动式直接甲醇燃料电池结构优化设计及作用机理研究[D].广州: 华南理工大学, 2012.
37
YUAN W. Structural optimization of the passive direct methanol fuel cell and mechanism analysis[D]. Guangzhou: South China University of Technology, 2012.
38
TAHERIAN R . A review of composite and metallic bipolar plates in proton exchange membrane fuel cell:materials, fabrication, and material selection[J]. Journal of Power Sources, 2014, 265 (1): 370- 390.
39
INABA M , KINUMOTO T , KIRIAKE M , et al. Gas crossover and membrane degradation in polymer electrolyte fuel cells[J]. Electrochimica Acta, 2006, 51 (26): 5746- 5753.
doi: 10.1016/j.electacta.2006.03.008
40
BOZZINI B , GIANONCELLI A , KAULICH B , et al. Metallic plate corrosion and uptake of corrosion products by nafion in polymer electrolyte membrane fuel cells[J]. Chemsuschem, 2010, 3 (7): 846- 850.
doi: 10.1002/cssc.201000048
41
LI H , KNIGHTS S , SHI Z , et al. Proton exchange membrane fuel cells:contamination and mitigation strategies[J]. Tetrahedron, 2010, 69 (40): 8612- 8617.
42
MYO E K , CHANG S KI , YOUNG J S , et al. A study on performance of polymer electrolyte membrane fuel cell using metal foam[J]. Korean Hydrogen and New Energy Society, 2015, 12 (6): 554- 559.
43
LEE Y H , LI S M , TSENG C J , et al. Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42 (34): 22201- 22207.
doi: 10.1016/j.ijhydene.2017.03.233
44
TABE Y , NASU T , MORIOKA S , et al. Performance characteristics and internal phenomena of polymer electrolyte membrane fuel cell with porous flow field[J]. Journal of Power Sources, 2013, 238 (28): 21- 28.
45
TSENG C J , TSAI B T , LIU Z S , et al. A PEM fuel cell with metal foam as flow distributor[J]. Energy Conversion & Management, 2012, 62 (4): 14- 21.
46
BAROUTAJI A , CARTON J G , STOKES J , et al. Application of open pore cellular foam for air breathing PEM fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42 (40): 25630- 25638.
doi: 10.1016/j.ijhydene.2017.05.114
47
REN Y J , ANISUR M R , QIU W , et al. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment:electrochemical impedance spectroscopy study[J]. Journal of Power Sources, 2017, 362, 366- 372.
doi: 10.1016/j.jpowsour.2017.07.041
48
PU N W , SHI G N , LIU Y M , et al. Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates[J]. Journal of Power Sources, 2015, 282, 248- 256.
doi: 10.1016/j.jpowsour.2015.02.055
49
STOOT A C , CAMILLI L , SPIEGELHAUER S A , et al. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2015, 293, 846- 851.
doi: 10.1016/j.jpowsour.2015.06.009