Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (5): 56-61    DOI: 10.11868/j.issn.1001-4381.2018.001129
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
二硫化钼/石墨烯复合材料的一步水热合成及电催化性能
张传香1,*(), 陈亚玲2, 巩云1, 刘慧颖1, 戴玉明1, 丛园1
1 南京工程学院 材料科学与工程学院, 南京 211167
2 南京航空航天大学 材料科学与技术学院, 南京 210016
One-step hydrothermal synthesis and electrocatalytic performance of MoS2/RGO composites
Chuan-xiang ZHANG1,*(), Ya-ling CHEN2, Yun GONG1, Hui-ying LIU1, Yu-ming DAI1, Yuan CONG1
1 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2 College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(2406 KB)   HTML ( 6 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为提高催化剂的催化活性及稳定性,采用一步水热法合成二硫化钼/石墨烯(MoS2/RGO)复合催化剂。利用X射线衍射仪、扫描电子显微镜、透射电子显微镜及旋转圆盘电极等分别对催化剂的物理-化学性能进行表征。结果表明:与石墨烯复合后,MoS2呈少层花瓣状结构,层间距增加且均匀附着在石墨烯薄层上;二硫化钼催化剂的氧还原过程主要以二电子途径进行,而MoS2/RGO复合催化剂在氧还原过程中可发挥协同催化作用,其氧还原过程中平均转移电子数为3.58,且复合催化剂在20000 s后的电流密度保持率高达89.7%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张传香
陈亚玲
巩云
刘慧颖
戴玉明
丛园
关键词 水热法二硫化钼/石墨烯氧还原催化稳定性    
Abstract

Molybdenum disulfide/reduced graphene(MoS2/RGO) composite catalyst was synthesized by one-step hydrothermal method in order to improve the catalytic activity and stability. X-ray diffractometer, scanning electron microscope, transmission electron microscope and rotating disk electrode were used to characterize the physical and chemical properties of the catalyst. The results show that the molybdenum disulfide compound with graphene has pear-shaped structure with few layers, and the layer spacing increases which is uniformly attached to the thin layer of graphene. The oxygen reduction process of molybdenum disulfide catalyst is mainly carried out in two-electron path, while MoS2/RGO composite catalyst can play a synergistic catalytic role in oxygen reduction process and the average number of electron transfer in the process is 3.58. The current density retention rate of the composite catalyst after 20000 s is up to 89.7%.

Key wordshydrothermal method    MoS2/RGO    oxygen reduction    catalytic stability
收稿日期: 2018-09-25      出版日期: 2020-05-28
中图分类号:  O643  
基金资助:国家自然科学基金(51402150);南京工程学院大学生创新项目(TB201902020);南京工程学院大学生创新项目(TB201902025);江苏省先进结构材料与应用技术重点实验室开放基金(ASMA201911);南京工程学院自然科学基金(CKJA201502);南京工程学院自然科学基金(JCYJ201606)
通讯作者: 张传香     E-mail: zhangcxnuaa@njit.edu.cn
作者简介: 张传香(1980-), 女, 副教授, 博士, 主要从事燃料电池催化剂材料的研究, 联系地址:江苏省南京市江宁科学园弘景大道1号南京工程学院材料科学与工程学院5-327室(211167), E-mail:zhangcxnuaa@njit.edu.cn
引用本文:   
张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
Chuan-xiang ZHANG, Ya-ling CHEN, Yun GONG, Hui-ying LIU, Yu-ming DAI, Yuan CONG. One-step hydrothermal synthesis and electrocatalytic performance of MoS2/RGO composites. Journal of Materials Engineering, 2020, 48(5): 56-61.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001129      或      http://jme.biam.ac.cn/CN/Y2020/V48/I5/56
Fig.1  MoS2与MoS2/RGO的XRD谱图
Fig.2  MoS2(a), (b)与MoS2/RGO(c), (d)的SEM图
Fig.3  MoS2(a), (b)与MoS2/RGO(c), (d)的TEM图
Fig.4  MoS2,RGO和MoS2/RGO在O2饱和的0.1 mol·L-1KOH中的CV曲线
Fig.5  MoS2/RGO在O2饱和的0.1 mol·L-1 KOH中不同旋转速率下的LSV曲线(a),不同电位下的K-L曲线(b)以及由K-L方程计算出的转移电子数(c)
Fig.6  MoS2/RGO在O2饱和的0.1 mol·L-1 KOH中循环测试1000周次前后的CV图
Fig.7  MoS2/RGO和Pt/C在O2饱和的0.1 mol·L-1 KOH中20000 s测试后的电流保持率(插图为MoS2/RGO和Pt/C的LSV曲线)
1 ALONSO-VANTE N , TRIBUTSCH H . Energy conversion catalysis using semiconducting transition metal cluster compounds[J]. Nature, 1986, 323 (6087): 431- 432.
doi: 10.1038/323431a0
2 SUN T , WU Q , CHE R , et al. Alloyed Co-Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium[J]. ACS Catalysis, 2015, 5 (3): 1857- 1862.
doi: 10.1021/cs502029h
3 史艳华, 赵杉林, 王玲, 等. 稀土Ce掺杂纳米晶Mn-Mo-Ce氧化物阳极及其选择电催化性能[J]. 材料工程, 2017, 45 (9): 72- 80.
3 SHI Y H , ZHAO S L , WANG L , et al. Nanocrystalline Mn-Mo-Ce oxide anode doped rare earth Ce and its selective electro-catalytic performance[J]. Journal of Materials Engineering, 2017, 45 (9): 72- 80.
4 ZIEGELBAUER J M , OLSON T S , PYLYPENKO S , et al. Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications[J]. Journal of Physical Chemistry C, 2008, 112 (24): 8839- 8849.
doi: 10.1021/jp8001564
5 FERNANDEZ J L , RAGHUVEER V , MANTHIRAM A , et al. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells[J]. Journal of the American Chemical Society, 2005, 127 (38): 13100- 13101.
doi: 10.1021/ja0534710
6 GUO S J , LI D G , ZHU H Y , et al. Fe/Pt and Co/Pt nanowires as efficient catalysts for the oxygen reduction reaction[J]. Ange-wandte Chemie, 2013, 52 (12): 3465- 3468.
doi: 10.1002/anie.201209871
7 RAMASWAMY N , ALLEN R J , MUKERJEE S . Electrochemical kinetics and X-ray absorption spectroscopic investigations of oxygen reduction on chalcogen-modified ruthenium catalysts in alkaline media[J]. Journal of Physical Chemistry C, 2011, 115 (25): 12650- 12664.
doi: 10.1021/jp201841j
8 WANG T Y , GAO D L , ZHUO J Q , et al. Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles[J]. Chemistry-A Euro-pean Journal, 2013, 19 (36): 11939- 11948.
doi: 10.1002/chem.201301406
9 WANG T Y , ZHUO J Q , CHEN Y , et al. Synergistic catalytic effect of MoS2 nanoparticles supported on gold nanoparticle films for a highly efficient oxygen reduction reaction[J]. Chemcat-chem, 2014, 6 (7): 1877- 1881.
doi: 10.1002/cctc.201402038
10 ENG A Y S , AMBROSI A , SOFER Z , et al. Electrochemistry of transition metal dichalcogenides:strong dependence on the metal-to-chalcogen composition and exfoliation method[J]. ACS Nano, 2014, 8 (12): 12185- 12198.
doi: 10.1021/nn503832j
11 XIE J F , ZHANG J J , LI S , et al. Correction to controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135 (47): 17881- 17888.
doi: 10.1021/ja408329q
12 SHAO J , QU Q T , WAN Z M , et al. From dispersed micro-spheres to interconnected nanospheres:carbon-sandwiched monolayered MoS2 as high-performance anode of Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (41): 22927- 22934.
13 XIONG F Y , CAI Z Y , QU L B , et al. Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers:a stable anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (23): 12625- 12630.
14 LI H L , YU K , FU H , et al. MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries[J]. Journal of Physical Chemistry C, 2015, 119 (14): 7959- 7968.
doi: 10.1021/acs.jpcc.5b00890
15 王铁钢, 李柏松, 阎兵, 等. 爆炸喷涂WC-Co/MoS2-Ni多层复合自润滑涂层的摩擦学行为[J]. 材料工程, 2017, 45 (3): 73- 79.
15 WANG T G , LI B S , YAN B , et al. Tribological behavior of multi-layered WC-Co/MoS2-Ni self-lubricating coating fabricated by detonation gun spraying[J]. Journal of Materials Engi-neering, 2017, 45 (3): 73- 79.
16 LEVITA G , CAVALEIRO A , MOLINARI E , et al. Sliding properties of MoS2 layers:load and interlayer orientation effects[J]. Journal of Physical Chemistry C, 2014, 118 (25): 13809- 13816.
doi: 10.1021/jp4098099
17 MA X Y , WANG Q , GU W X . Enhancement of photoelectric efficiency via optimization of absorption and excitation of surface plasmons in ZnO/CdS/MoS2/Ag multilayer films[J]. Journal of Nanoelectronics and Optoelectronics, 2015, 10 (2): 191- 194.
doi: 10.1166/jno.2015.1726
18 ZHAO M , CHANG M J , WANG Q , et al. Unexpected optical limiting properties from MoS2nanosheets modified by a semiconductive polymer[J]. Chemical Communication, 2015, 51 (61): 12262- 12265.
doi: 10.1039/C5CC01819F
19 王莹, 李勇, 朱靖, 等. 氧化石墨烯表面稀土改性机理[J]. 材料工程, 2018, 46 (5): 29- 35.
19 WANG Y , LI Y , ZHU J , et al. Surface modification mechanism of graphene oxide by adding rare earths[J]. Journal of Materials Engineering, 2018, 46 (5): 29- 35.
20 曾斌, 陈小华, 汪次荣. 石墨烯负载硫化锌/硫化铜异质结的制备及光催化性能[J]. 材料工程, 2017, 45 (12): 99- 105.
doi: 10.11868/j.issn.1001-4381.2015.001112
20 ZENG B , CHEN X H , WANG C R . Synthesis and photocatalytic properties of reduced graphene oxides loaded-nano ZnS/CuS heterostructures[J]. Journal of Materials Engineering, 2017, 45 (12): 99- 105.
doi: 10.11868/j.issn.1001-4381.2015.001112
21 CHANG K , CHEN W X . Single-layer MoS2/graphene dispersed in amorphous carbon:towards high electrochemical perfor-mances in rechargeable lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21 (43): 17175- 17184.
doi: 10.1039/c1jm12942b
22 CHANG K , CHEN W X , MA L , et al. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21 (17): 6251- 6257.
doi: 10.1039/c1jm10174a
23 陈亚玲, 宋力, 郭虎, 等. 水热合成二硫化钨/石墨烯复合材料及其氧还原性能[J]. 无机化学学报, 2016, 32 (4): 633- 640.
23 CHEN Y L , SONG L , GUO H , et al. Hydrothermal synthesis and ORR performance of tungsten disulfide/reduced graphene oxide composite[J]. Chinese Journal of Inorganic Chemistry, 2016, 32 (4): 633- 640.
[1] 孙小卉, 刘淑红, 卢璐, 史继诚, 徐洪峰. 碳载体预处理对燃料电池Co-N/C非铂催化剂氧还原性能的影响[J]. 材料工程, 2022, 50(9): 52-58.
[2] 倪航, 刘万能, 柯尊洁, 田玉, 朱小龙, 郑广. MgCo2O4海胆状电极材料的制备及其电化学性能[J]. 材料工程, 2022, 50(8): 143-152.
[3] 宋永智, 毕松, 侯根良, 李浩, 赵彦凯, 刘朝辉. MnO2纳米棒的吸波性能及其超构表面设计[J]. 材料工程, 2022, 50(7): 110-118.
[4] 潘廷仙, 郑秋燕, 李茂辉, 同鑫, 胡长刚, 田娟. 酸处理对FeN/ZIF-8催化剂氧还原反应催化性能的影响[J]. 材料工程, 2022, 50(5): 122-129.
[5] 李茂辉, 杨智, 潘廷仙, 同鑫, 胡长刚, 田娟. 铁氮掺杂活性炭载体增强碳载铂基催化剂氧还原反应稳定性[J]. 材料工程, 2022, 50(4): 132-138.
[6] 施琦, 丁龙, 龙红明, 王毅璠, 春铁军. 纳米形貌对Ce-V催化剂降解氯苯活性影响[J]. 材料工程, 2021, 49(8): 162-168.
[7] 郑秋燕, 杨智, 李茂辉, 潘廷仙, 秦好丽, 田娟. 铁前驱体对FeN/ZIF-8催化剂氧还原活性的影响[J]. 材料工程, 2021, 49(6): 132-139.
[8] 谌建平, 张旭, 林东宝, 潘海波, 沈水发. 纳米花/棒SnO2的水热法制备及其气敏性[J]. 材料工程, 2021, 49(6): 164-169.
[9] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[10] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[11] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[12] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[13] 秦振海, 黄昊, 吴爱民, 陈明珠, 杨影影, 姚曼. 立方相碳化钛在锂空电池中的电化学行为[J]. 材料工程, 2019, 47(2): 34-41.
[14] 张相辉. La掺杂改性Bi2WO6纳米材料的制备及其光催化性能[J]. 材料工程, 2018, 46(11): 57-62.
[15] 武美荣, 魏智强, 武晓娟, 杨华, 姜金龙. Zn1-xMnxS稀磁半导体的合成与光学性能[J]. 材料工程, 2017, 45(7): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn