1 School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China 2 College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Molybdenum disulfide/reduced graphene(MoS2/RGO) composite catalyst was synthesized by one-step hydrothermal method in order to improve the catalytic activity and stability. X-ray diffractometer, scanning electron microscope, transmission electron microscope and rotating disk electrode were used to characterize the physical and chemical properties of the catalyst. The results show that the molybdenum disulfide compound with graphene has pear-shaped structure with few layers, and the layer spacing increases which is uniformly attached to the thin layer of graphene. The oxygen reduction process of molybdenum disulfide catalyst is mainly carried out in two-electron path, while MoS2/RGO composite catalyst can play a synergistic catalytic role in oxygen reduction process and the average number of electron transfer in the process is 3.58. The current density retention rate of the composite catalyst after 20000 s is up to 89.7%.
ALONSO-VANTE N , TRIBUTSCH H . Energy conversion catalysis using semiconducting transition metal cluster compounds[J]. Nature, 1986, 323 (6087): 431- 432.
doi: 10.1038/323431a0
2
SUN T , WU Q , CHE R , et al. Alloyed Co-Mo nitride as high-performance electrocatalyst for oxygen reduction in acidic medium[J]. ACS Catalysis, 2015, 5 (3): 1857- 1862.
doi: 10.1021/cs502029h
SHI Y H , ZHAO S L , WANG L , et al. Nanocrystalline Mn-Mo-Ce oxide anode doped rare earth Ce and its selective electro-catalytic performance[J]. Journal of Materials Engineering, 2017, 45 (9): 72- 80.
4
ZIEGELBAUER J M , OLSON T S , PYLYPENKO S , et al. Direct spectroscopic observation of the structural origin of peroxide generation from Co-based pyrolyzed porphyrins for ORR applications[J]. Journal of Physical Chemistry C, 2008, 112 (24): 8839- 8849.
doi: 10.1021/jp8001564
5
FERNANDEZ J L , RAGHUVEER V , MANTHIRAM A , et al. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells[J]. Journal of the American Chemical Society, 2005, 127 (38): 13100- 13101.
doi: 10.1021/ja0534710
6
GUO S J , LI D G , ZHU H Y , et al. Fe/Pt and Co/Pt nanowires as efficient catalysts for the oxygen reduction reaction[J]. Ange-wandte Chemie, 2013, 52 (12): 3465- 3468.
doi: 10.1002/anie.201209871
7
RAMASWAMY N , ALLEN R J , MUKERJEE S . Electrochemical kinetics and X-ray absorption spectroscopic investigations of oxygen reduction on chalcogen-modified ruthenium catalysts in alkaline media[J]. Journal of Physical Chemistry C, 2011, 115 (25): 12650- 12664.
doi: 10.1021/jp201841j
8
WANG T Y , GAO D L , ZHUO J Q , et al. Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles[J]. Chemistry-A Euro-pean Journal, 2013, 19 (36): 11939- 11948.
doi: 10.1002/chem.201301406
9
WANG T Y , ZHUO J Q , CHEN Y , et al. Synergistic catalytic effect of MoS2 nanoparticles supported on gold nanoparticle films for a highly efficient oxygen reduction reaction[J]. Chemcat-chem, 2014, 6 (7): 1877- 1881.
doi: 10.1002/cctc.201402038
10
ENG A Y S , AMBROSI A , SOFER Z , et al. Electrochemistry of transition metal dichalcogenides:strong dependence on the metal-to-chalcogen composition and exfoliation method[J]. ACS Nano, 2014, 8 (12): 12185- 12198.
doi: 10.1021/nn503832j
11
XIE J F , ZHANG J J , LI S , et al. Correction to controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2013, 135 (47): 17881- 17888.
doi: 10.1021/ja408329q
12
SHAO J , QU Q T , WAN Z M , et al. From dispersed micro-spheres to interconnected nanospheres:carbon-sandwiched monolayered MoS2 as high-performance anode of Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (41): 22927- 22934.
13
XIONG F Y , CAI Z Y , QU L B , et al. Three-dimensional crumpled reduced graphene oxide/MoS2 nanoflowers:a stable anode for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7 (23): 12625- 12630.
14
LI H L , YU K , FU H , et al. MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries[J]. Journal of Physical Chemistry C, 2015, 119 (14): 7959- 7968.
doi: 10.1021/acs.jpcc.5b00890
WANG T G , LI B S , YAN B , et al. Tribological behavior of multi-layered WC-Co/MoS2-Ni self-lubricating coating fabricated by detonation gun spraying[J]. Journal of Materials Engi-neering, 2017, 45 (3): 73- 79.
16
LEVITA G , CAVALEIRO A , MOLINARI E , et al. Sliding properties of MoS2 layers:load and interlayer orientation effects[J]. Journal of Physical Chemistry C, 2014, 118 (25): 13809- 13816.
doi: 10.1021/jp4098099
17
MA X Y , WANG Q , GU W X . Enhancement of photoelectric efficiency via optimization of absorption and excitation of surface plasmons in ZnO/CdS/MoS2/Ag multilayer films[J]. Journal of Nanoelectronics and Optoelectronics, 2015, 10 (2): 191- 194.
doi: 10.1166/jno.2015.1726
18
ZHAO M , CHANG M J , WANG Q , et al. Unexpected optical limiting properties from MoS2nanosheets modified by a semiconductive polymer[J]. Chemical Communication, 2015, 51 (61): 12262- 12265.
doi: 10.1039/C5CC01819F
WANG Y , LI Y , ZHU J , et al. Surface modification mechanism of graphene oxide by adding rare earths[J]. Journal of Materials Engineering, 2018, 46 (5): 29- 35.
ZENG B , CHEN X H , WANG C R . Synthesis and photocatalytic properties of reduced graphene oxides loaded-nano ZnS/CuS heterostructures[J]. Journal of Materials Engineering, 2017, 45 (12): 99- 105.
doi: 10.11868/j.issn.1001-4381.2015.001112
21
CHANG K , CHEN W X . Single-layer MoS2/graphene dispersed in amorphous carbon:towards high electrochemical perfor-mances in rechargeable lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21 (43): 17175- 17184.
doi: 10.1039/c1jm12942b
22
CHANG K , CHEN W X , MA L , et al. Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21 (17): 6251- 6257.
doi: 10.1039/c1jm10174a
CHEN Y L , SONG L , GUO H , et al. Hydrothermal synthesis and ORR performance of tungsten disulfide/reduced graphene oxide composite[J]. Chinese Journal of Inorganic Chemistry, 2016, 32 (4): 633- 640.