Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (6): 118-124    DOI: 10.11868/j.issn.1001-4381.2019.000322
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响
刘媛媛1,2,3, 李舒婷1,2, 彭军1,2, 安胜利1,2
1 内蒙古科技大学 材料与冶金学院, 内蒙古 包头 014010;
2. 内蒙古先进陶瓷材料与器件重点实验室, 内蒙古 包头 014010;
3 内蒙古科技大学 化学与化工学院, 内蒙古 包头 014010
Influence of Gd2O3 doping contents on conductivity of Ce1-xGdxO2-δ electrolyte
LIU Yuan-yuan1,2,3, LI Shu-ting1,2, PENG Jun1,2, AN Sheng-li1,2
1. School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China;
2. Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, Baotou 014010, Inner Mongolia, China;
3. College of Chemistry and Chemical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
全文: PDF(3426 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 在500~700℃时,Gd2O3掺杂CeO2具有较高的离子电导率,从而被广泛应用于中温固体氧化物燃料电池(solid oxide fuel cell,SOFC)中。但在SOFC运行时,在电池的阳极侧Ce4+会被还原成Ce3+,产生电子泄露现象,从而造成SOFC电池性能的衰减。采用溶胶-凝胶法成功制备Ce1-xGdxO2-δx=0.05,0.10,0.15,0.20,0.25,摩尔分数)固体电解质,研究不同Gd3+掺杂量对GDC电解质总电导率和电子电导率的影响,同时对总电导率、电子电导率与温度、氧分压之间的关系进行分析。结果表明:测试温度为750℃、Gd3+掺杂量为0.20时,GDC电解质的总电导率最大,达到8.59×10-2 S·cm-1;电子电导率随着Gd3+掺杂量的增大而降低,当Gd3+掺杂量为0.10、测试温度为750℃时,GDC电解质的电子电导率最大,为6.47×10-4 S·cm-1。Gd2O3掺杂量为0.20的GDC电解质具有最高的总电导率和较小的电子电导率,从而突显出最高的离子电导率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘媛媛
李舒婷
彭军
安胜利
关键词 固体氧化物燃料电池Ce1-xGdxO2-δ电解质电导率Hebb-Wagner极化法    
Abstract:Gd2O3 doped CeO2(GDC) was widely used in solid oxide fuel cell (SOFC) because of its high ionic conductivity at 500-700 ℃. However, during the SOFC operation, Ce4+ was reduced to Ce3+ at the anode side of the battery, resulting in electronic leakage, which leaded to the degradation of SOFC battery performance. The Ce1-xGdxO2-δ(x=0.05,0.10,0.15,0.20,0.25, mole fraction) solid electrolyte was prepared by sol-gel method. The effects of different Gd3+ doping amount on the total conductivity and electronic conductivity of GDC electrolyte were studied, and the relationships between the total conductivity, electronic conductivity, and temperature, oxygen partial pressure were analyzed. The results show that, when the Gd2O3 doping content is 0.20, the total conductivity of GDC reaches the highest 8.59×10-2 S·cm-1 at 750 ℃. The electronic conductivity decreases with the increase of Gd3+doping amount, and reaches the highest 6.47×10-4 S·cm-1 at 750 ℃ when Gd3+doping amount is 0.10. The GDC with doping amount of 0.20 highlights the highestionic conductivity because of its highest total conductivity and smaller electronic conductivity.
Key wordssolid oxide fuel cell    Ce1-xGdxO2-δ electrolyte    electrical conductivity    Hebb-Wagner polari-zation method
收稿日期: 2019-04-06      出版日期: 2020-06-15
中图分类号:  TQ174.75  
基金资助: 
通讯作者: 安胜利(1961-),男,教授,博士生导师,研究方向:离子与混合导体及器件,联系地址:内蒙古自治区包头市昆都仑区阿尔丁大街7号内蒙古科技大学材料与冶金学院(014010), san@imust.edu.cn     E-mail: san@imust.edu.cn
引用本文:   
刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
LIU Yuan-yuan, LI Shu-ting, PENG Jun, AN Sheng-li. Influence of Gd2O3 doping contents on conductivity of Ce1-xGdxO2-δ electrolyte. Journal of Materials Engineering, 2020, 48(6): 118-124.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000322      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/118
[1] MINH N Q. Ceramic fuel-cells[J]. Journal of the American Ceramic Society,1993,76:563-588.
[2] 石井弘毅. 图说燃料电池的原理与应用[M]. 白彦华,杨晓辉,译.北京:科学出版社,2003. ISHII H. Illustrated the principle and application of fuel cell[M]. Translated by BAI Y H,YANG X H.Beijing:Science Press,2003.
[3] 毛宗强. 燃料电池[M]. 北京:化学工业出版社,2005. MAO Z Q. Fuel cell[M]. Beijing:Chemical Industry Press,2005.
[4] STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature,2001,414(6861):345-352.
[5] MINH N Q, TAKAHASHI T. Science and technology of ceramic fuel cells[M]. Amsterdam: Elsevier,1990.140.
[6] 韩敏芳,张永亮. 固体氧化物燃料电池中的陶瓷材料[J]. 硅酸盐学报,2017(45):1548-1554. HAN M F, ZHANG Y L.Ceramic materials for solid oxide fuel cell[J]. Journal of the Chinese Ceramic Society,2017(45):1548-1554.
[7] LAKSHMI V V,BAURI R,GANDHI A S,et al. Synthesis and characterization of nanocrystalline ScSZ electrolyte for SOFCs[J]. International Journal of Hydrogen Energy,2011,36(22):14936-14942.
[8] 薛守庆. 纳米二氧化铈的化学制备方法及应用研究[J]. 化工技术与开发,2014(8):38-40. XUE S Q. Study progress of chemical preparation of nanometer CeO2[J]. Technology & Development of Chemical Industry,2014(8):38-40.
[9] 郭瑞华,张捷宇,周国治,等.固体氧化物燃料电池电解质Gd0.1BaxCe0.9-xO2-σ的制备及性能分析研究[J].化工新型材料,2017,45(7):120-122. GUO R H,ZHANG J Y,ZHOU G Z,et al. Preparation and performance analysis of solid oxide fuel cell electrolyte Gd0.1BaxCe0.9-xO2-σ[J]. New Chemical Materials,2017,45(7):120-122.
[10] WUT W,JIA G X,WANG X X,et al. Transitional area of Ce4+ to Ce3+ in SmxCayCe1-x-yO2-δ with various doping and oxygen vacancy concentrations: a GGA+U study [J]. Chinese J Struct Chem,2018,37(2):198-209.
[11] 吴铜伟,贾桂霄,包金小,等. CaO或BaO与Sm2O3共掺杂CeO2体系电子结构和氧离子迁移的DFT+U研究[J]. 无机化学学报,2016,32(8):1363-1369. WU T W,JIA G X,BAO J X,et al. Electronic structure and oxygen ion migration of the CaO or Bao and Sm2O3Co-doped CeO2system:a DFT + U study[J].Chinese Journal of Inorganic Chemistry,2016,32(8):1363-1369.
[12] YAHIRO H,EGUCHI Y,EGUCHI K,et al. Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure[J]. Journal of Applied Electrochemistry,1988,18(4):527-531.
[13] 苑亚杰,张梦霏,李天君,等. Ce0.8Sm0.1Nd0.1O2-σ/La10Si6O27复合电解质材料的电学性能研究[J]. 稀有金属材料与工程,2018,47(1):339-343. YUAN Y J, ZHANG M F, LI T J, et al. Electrical properties of Ce0.8Sm0.1Nd0.1O2-σ/La10Si6O27composite electrolyte[J]. Rare Metal Materials and Engineering,2018,47(1):339-343.
[14] ZHANG T S,MA J,CHENG H,et al. Ionic conductivity of high-purity Gd-doped ceria solid solutions[J]. Materials Research Bulletin,2006,41(3):563-568.
[15] MOGENSEN M,SAMMES N M,TOMPSETT G A. Physical,chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics,2000,129:63-94.
[16] STEELE B C H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 ℃[J]. Solid State Ionics,2000,129:95-110.
[17] LEE K T,YOON H S,WACHSMAN E D. The evolution of low temperature solid oxide fuel cells[J]. Journal of Materials Research,2012,27:2063-2078.
[18] SHIMONOSONO T,HIRATA Y,EHIRA Y,et al. Electronic conductivity measurement of Sm- and La-doped ceria ceramics by Hebb-Wagner method[J]. Journal of Solid State Ionics,2004,174(1/4):27-33.
[19] WANG S R,TAKEHISA K,MASAYUKI D,et al. Electrical and ionic conductivity of Gd-doped ceria[J]. Journal of the Electrochemical Society,2000,147(10):3606-3609.
[20] QIAN J,TAO Z,XIAO J,et al. Performance improvement of ceria-based solid oxide fuel cells with yttria-stabilized zirconia as an electronic blocking layer by pulsed laser deposition[J]. International Journal of Hydrogen Energy,2013,38:2407-2412.
[21] 程亮,罗凌虹,徐序,等. 燃烧法制备不同钆含量的GDC纳米粉体及其电导性[J]. 硅酸盐学报,2018(3):354-360. CHENG L,LUO L H, XU X,et al. Preparation of GDC nano-powder with different gadolinium contents by combustion method and its electrical conductivity[J]. Journal of the Chinese Ceramic Society,2018(3):354-360.
[22] 宋希文,赵永旺,彭军,等. Gd2O3掺杂CeO2-δ固体电解质的电化学性能研究[J]. 功能材料,2004,35(增刊1):988-990. SONG X W,ZHAO Y W,PENG J,et al. Electrochemical performance of Gd2O3 doped CeO2-δelectrolyte[J]. Journal of Functional Materials,2004,35(Suppl 1):988-990.
[23] 史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001. SHE M L. AC impedance spectroscopy principles and applications[M]. Beijing:National Defense Industry Press,2001.
[24] 王立帆,刘媛媛,彭军,等. Ce0.8Sm0.2O1.9固体电解质的电子电导性研究[J].中国稀土学报,2018,36(1):107-113. WANG L F,LIU Y Y,PENG J,et al. Study on the electronic conductivity of Ce0.8Sm0.2O1.9 solid electrolyte[J].Journal of the Chinese Rare Earth Society,2018,36(1):107-113.
[1] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[2] 王伟国, 王新福, 汪聃, 郝刚领. 锶镁共掺对Na0.5Bi0.5TiO3氧离子导体电学性能的影响分析[J]. 材料工程, 2019, 47(8): 28-32.
[3] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[4] 吴闪, 朱延俊, 赵梦媛, 解昊, 杨星, 边凌锋, 孟彬. Co元素掺杂对CeO2基固态电解质导电行为的影响[J]. 材料工程, 2018, 46(5): 133-138.
[5] 何卫, 王利民, 蔡炜, 汤超, 姚辉. 氮掺杂碳纳米管/铝基复合材料的制备及性能[J]. 材料工程, 2016, 44(2): 49-55.
[6] 张志华, 潘复生, 陈先华, 刘娟. 镁及其合金的电磁屏蔽性能研究[J]. 材料工程, 2013, 0(1): 52-57.
[7] 王攀, 郑玉婴, 李宝铭, 张通. PVPy/MWNTs纳米复合材料的制备及其导电性能研究[J]. 材料工程, 2012, 0(7): 71-75.
[8] 郑育英, 廖世军, 黄慧民, 王俏运. NiO-YSZ纳米复合粉体的制备及其表征[J]. 材料工程, 2011, 0(8): 68-71.
[9] 王桂兰, 熊凡, 芮道满, 张海鸥. 固/液相等离子喷涂制备固体氧化物燃料电池复合电极[J]. 材料工程, 2011, 0(7): 6-9.
[10] 陈进, 张海燕, 刘晓平, 李丽萍. 碳包铜纳米颗粒的制备及其性能研究[J]. 材料工程, 2011, 0(7): 31-33,89.
[11] 张小帆, 邢丽, 杨成刚, 柯黎明. 未焊透缺陷深度对LY12铝合金搅拌摩擦焊焊缝电导率的影响[J]. 材料工程, 2010, 0(2): 13-16.
[12] 郑文景, 周万城, 罗发, 于新民. SiC纤维表面C涂层的制备及介电性能研究[J]. 材料工程, 2009, 0(11): 36-39.
[13] 帅歌旺, 方平, 郭正华, 卢百平. 机械合金化制备Cu-Fe过饱和固溶体及其时效分解[J]. 材料工程, 2008, 0(12): 51-54.
[14] 戴剑锋, 高建龙, 乔宪武, 王青, 李维学, 杜晓芳. CNTs定向排列的CNTs/PMMA电导率低突增效应研究[J]. 材料工程, 2008, 0(10): 1-4,9.
[15] 颜海燕, 胡志毅, 寇开昌, 郑建龙, 张教强. 功能磺酸掺杂聚苯胺的电导率及其光谱特征研究[J]. 材料工程, 2005, 0(1): 50-52,57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn