Please wait a minute...
 
2222材料工程  2020, Vol. 48 Issue (6): 156-162    DOI: 10.11868/j.issn.1001-4381.2018.001058
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
冷挤压GH4169合金孔结构疲劳性能与断口分析
王欣1,2,*(), 陈星3, 胡仁高4, 胡博4, 许春玲1,2, 汤智慧1,2, 古远兴4
1 中国航发北京航空材料研究院 表面工程研究所, 北京 100095
2 中国航发北京航空材料研究院 航空材料先进腐蚀与防护航空科技重点实验室, 北京 100095
3 中国航发北京 航空材料研究院检测研究中心, 北京 100095
4 中国航发四川燃气涡轮研究院, 成都 610500
Fatigue property and fracture analysis on cold-expanded hole structure of GH4169 alloy
Xin WANG1,2,*(), Xing CHEN3, Ren-gao HU4, Bo HU4, Chun-ling XU1,2, Zhi-hui TANG1,2, Yuan-xing GU4
1 Surface Engineering Institution, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Aviation Key Laboratory of Advanced Corrosion and Protection on Aviation Materials, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
3 Testing Research Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
4 AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China
全文: PDF(2754 KB)   HTML ( 8 )  
输出: BibTeX | EndNote (RIS)      
摘要 

对GH4169合金中心孔板材进行冷挤压强化,研究其挤压前后825 MPa/600℃/R=0.1疲劳寿命,分析挤压前后表面粗糙度变化和疲劳过程中的残余应力场演化,并细致观察两件挤压试样不同寿命(分别为25105周次和10719周次)断口以分析表面完整性对疲劳过程的作用。结果表明:相比原始试样,冷挤压强化后试样中值疲劳寿命估计量提高了1倍,挤压后较低的表面粗糙度和疲劳过程中稳定的残余应力场是疲劳寿命提高的主要原因。同时,挤压后疲劳寿命标准差增大。由断口定量分析可知,两件试样距疲劳源区0.1 mm之后的扩展寿命相当,而萌生寿命(分别为18786周次和5915周次)却相差巨大。造成孔挤压后寿命分散性大的原因是0.1 mm以内的裂纹萌生寿命差别。为提高孔结构疲劳性能稳定性,挤压时应注意近表层表面完整性的控制。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王欣
陈星
胡仁高
胡博
许春玲
汤智慧
古远兴
关键词 冷挤压孔结构疲劳断口定量分析    
Abstract

Cold expansion (CE) was applied on the centre-hole plate of GH4169 alloy. The fatigue lives, as received and after CE, were investigated at 825 MPa/600 ℃/R=0.1. Surface roughness before and after CE, residual stress profiles during fatigue cycles were studied. And the influence of surface integrity on fatigue process was analyzed by the careful fracture observation with two CE samples of different lives (25105 cycles and 10719 cycles). The results show that the median fatigue life estimation of specimens after CE doubles compared with as-received. The lower surface average roughness after CE and the stable residual stress profile during fatigue process are the main reasons for fatigue life promotion. However, the standard deviation of fatigue lives increases after CE. The fractographic quantitative analysis shows the propagation lives of two specimens beyond 0.1 mm from fatigue source are considered, but initiation lives (18786 cycles and 5915 cycles, respectively) are of great difference. As a contrast, the reason of the big dispersion about CE fatigue lives is the different initiation life within 0.1 mm from the source. Therefore, the attention should be paid to the surface integrity control of near surface during cold expansion to improve the stability of hole structure fatigue property.

Key wordscold expansion    hole structure    fatigue    fractographic quantitative analysis
收稿日期: 2018-08-31      出版日期: 2020-06-15
中图分类号:  TG668  
通讯作者: 王欣     E-mail: rasheed990918@163.com
作者简介: 王欣(1983-), 男, 研究员, 研究方向为抗疲劳的表面强化技术, 联系地址:北京市81信箱5分箱(100095), E-mail:rasheed990918@163.com
引用本文:   
王欣, 陈星, 胡仁高, 胡博, 许春玲, 汤智慧, 古远兴. 冷挤压GH4169合金孔结构疲劳性能与断口分析[J]. 材料工程, 2020, 48(6): 156-162.
Xin WANG, Xing CHEN, Ren-gao HU, Bo HU, Chun-ling XU, Zhi-hui TANG, Yuan-xing GU. Fatigue property and fracture analysis on cold-expanded hole structure of GH4169 alloy. Journal of Materials Engineering, 2020, 48(6): 156-162.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001058      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/156
Fig.1  中心孔板材疲劳试样
(a)正视图;(b)侧视图
C Cr Ni Co Mo Al Ti Fe
0.04 19.0 53.0 ≤1.0 3.0 0.5 1.0 Bal
Table 1  GH4169合金化学成分(质量分数/%)
Temperature/
σb/
MPa
σ0.2/
MPa
δ4/
%
ψ/
%
20 1345-1430 1140-1200 12-22 20-37
650 1100-1165 930-995 12-30 25-38
Table 2  GH4169合金力学性能
State Sample No σmax/ MPa Fatigue life/ cycle Logarithmic fatigue life/cycle Median fatigue life/cycle Median fatigue life estimation/cycle Standard deviation
As-received 169-K-23 825 7574 3.88 3.9 7362 0.03
169-K-25 7038 3.85
169-K-26 8020 3.90
169-K-38 7412 3.87
169-K-55 6447 3.81
169-K-59 7752 3.89
169-K-62 7121 3.85
Cold expansion 169-K-17 825 15098 4.18 4.2 14927 0.13
169-K-31 25105 4.40
169-K-34 13844 4.14
169-K-52 9245 3.97
169-K-61 12554 4.10
169-K-67 10719 4.03
169-K-68 15726 4.20
Table 3  825 MPa/600 ℃/R=0.1条件下挤压和原始试样的疲劳寿命
NoRa/μm
As-received Cold expansion
1 0.46 0.21
2 0.42 0.18
3 0.47 0.17
Table 4  原始试样和冷挤压试样表面粗糙度
Fig.2  挤压和不同疲劳周次下的孔边残余压应力场
Fig.3  中心孔板材疲劳试样断裂外观
Fig.4  中心孔板材疲劳试样断口宏观形貌
(a)169-K-67;(b)169-K-31
Fig.5  169-K-67试样左侧断面微观形貌
(a)源区形貌;(b)放大源区形貌;(c), (d), (e)前/中/后期疲劳条带;(f)瞬断区
Fig.6  169-K-31试样左侧断面微观形貌
(a)源区形貌;(b)放大源区形貌;(c), (d), (e)前/中/后期疲劳条带;(f)瞬断区
No Crack length/ mm Average spacing of fatigue bands/μm N′i/ cycle Ni/ cycle
1 0.100 0.65 1875 1875
2 1.319 0.65 1202 1202
3 2.082 0.62 543 543
4 2.457 0.76 932 932
5 3.235 0.91 504 252
6 3.747 1.12 Nn =5056 Nn =4804
Table 5  169-K-67试样左侧断面疲劳条带测量结果
Fig.7  169-K-67试样左侧断面裂纹扩展速率与裂纹长度的关系
No Crack length/mm Average spacing of fatigue bands/μm N′i/cycle
1 0.100 0.48 743
2 0.468 0.51 1016
3 1.037 0.61 1026
4 1.668 0.62 1035
5 2.460 0.91 928
6 3.388 1.09 551
7 3.931 0.88 717
8 4.634 1.08 213
9 4.868 1.12 Nn=6229
Table 6  169-K-31试样左侧断面疲劳条带测量结果
Fig.8  169-K-31试样左侧断面裂纹扩展速率与裂纹长度的关系
1 张智轩, 石多奇, 杨晓光. 含销钉孔边裂纹的某压气机轮盘裂纹扩展分析[J]. 航空动力学报, 2016, 31 (3): 567- 574.
1 ZHANG Z X , SHI D Q , YANG X G . Analysis of crack propagation for a compressor disk with cracks on pin holes[J]. Journal of Aerospace Power, 2016, 31 (3): 567- 574.
2 KOUL A K , BELLINGER N C , GOULD G . Damage-tolerance-based life prediction of aeroengine compressor discs: Ⅱ a probabilistic fracture mechanics approach[J]. International Journal of Fatigue, 1990, 12 (5): 388- 396.
doi: 10.1016/0142-1123(90)90003-W
3 CHINNARAJ K , SATHYA P M , LAKSHMANA R C . Effect of bolt hole residual stresses on fatigue performance of truck frame rail structures[J]. Applied Mechanics and Materials, 2013, 300/301, 1089- 1098.
doi: 10.4028/www.scientific.net/AMM.300-301.1089
4 杨伟, 徐伟. BR700系列发动机高压压气机设计及结构特征[J]. 燃气涡轮的试验与研究, 2014, 27 (3): 30- 34.
4 YANG W , XU W . HPC design and structure features of BR700 series engine[J]. Gas Turbine Experiment and Research, 2014, 27 (3): 30- 34.
5 郑旭东, 蔚夺魁. 某发动机高压压气机篦齿盘均压孔孔边裂纹故障分析[J]. 航空发动机, 2013, 39 (3): 49- 54.
doi: 10.3969/j.issn.1672-3147.2013.03.011
5 ZHENG X D , WEI D K . Study of vent hole crack failure for an aeroengine labyrinth seal disk[J]. Aeroengine, 2013, 39 (3): 49- 54.
doi: 10.3969/j.issn.1672-3147.2013.03.011
6 刘庆瑞, 刘玉萍. 发动机第四级压气机盘裂纹失效分析[J]. 航空发动机, 1999, (2): 38- 41.
6 LIU Q R , LIU Y P . Failure analysis of engine 4th stage compressor disc crack[J]. Aeroengine, 1999, (2): 38- 41.
7 陈秋任, 郭海丁, 刘小刚. 涡轮盘双轴对称异形孔结构建模与优化[J]. 航空动力学报, 2013, 28 (6): 1250- 1255.
7 CHEN Q R , GUO H D , LIU X G . Modeling and optimization for the structure of biaxial symmetry non-circular hole of turbine disk[J]. Journal of Aerospace Power, 2013, 28 (6): 1250- 1255.
8 魏昕. 镍基高温合金工件异形孔加工工艺的研究[J]. 工具技术, 2000, 36 (6): 19- 23.
doi: 10.3969/j.issn.1000-7008.2000.06.006
8 WEI X . Study on machining process of shaped hole in Ni-base super-heat-resistant alloy workpieces[J]. Tool Engineering, 2000, 36 (6): 19- 23.
doi: 10.3969/j.issn.1000-7008.2000.06.006
9 BALL D L , LOWRY D R . Experimental investigation on the effects of cold expansion of fastener holes[J]. Fatigue & Fracture of Engineering Materials & Structures, 1998, 21 (1): 17- 34.
10 FARHANGDOOST K , HOSSEINI A . Finite element modeling of mandrel speed in cold expansion process[J]. International Journal of Structural Integrity, 2012, 3 (4): 441- 456.
doi: 10.1108/17579861211281227
11 王欣, 胡仁高, 胡博, 等. 喷丸强化对GH4169合金孔结构高温低周疲劳性能的影响[J]. 中国表面工程, 2015, 28 (6): 7- 12.
11 WANG X , HU R G , HU B , et al. Effects of shot peening on high-temperature low-cycle fatigue property of GH4169 superalloy with hole structure[J]. China Surface Engineering, 2015, 28 (6): 7- 12.
12 杨兴宇, 董立伟, 郑小梅, 等. 某压气机轮盘均压孔挤压强化数值仿真和挤压头设计[J]. 航空动力学报, 2013, 28 (8): 1769- 1776.
12 YANG X Y , DONG L W , ZHENG X M , et al. Simulation of extrusion strengthening of pressure equalizing hole of an engine compressor disc and design of extrusion heads[J]. Journal of Aerospace Power, 2013, 28 (8): 1769- 1776.
13 杨兴宇, 孟祥明, 董立伟, 等. 薄板孔边挤压强化对高周疲劳寿命影响的试验[J]. 航空动力学报, 2011, 26 (2): 362- 369.
13 YANG X Y , MENG X M , DONG L W , et al. High cycle fatigue life experiment of sheet metal with coldworking hole[J]. Journal of Aerospace Power, 2011, 26 (2): 362- 369.
14 罗学昆, 王欣, 胡仁高, 等. 孔挤压强化对Inconel 718高温合金疲劳性能的影响[J]. 中国表面工程, 2016, 29 (3): 116- 122.
14 LUO X K , WANG X , HU R G , et al. Effects of hole cold expansion on fatigue property of Inconel 718 superalloy[J]. China Surface Engineering, 2016, 29 (3): 116- 122.
15 王欣, 胡仁高, 胡博, 等. 孔挤压对于高温合金GH4169孔结构高温疲劳性能的影响[J]. 航空动力学报, 2017, 32 (1): 89- 95.
15 WANG X , HU R G , HU B , et al. Effect of hole-expansion on high-temperature fatigue property of GH4169 superalloy hole structure[J]. Journal of Aerospace Power, 2017, 32 (1): 89- 95.
16 SANGID M D , STORI J A , FERRIERA P M . Process characterization of vibrostrengthening and application to fatigue enhancement of aluminum aerospace components—part Ⅰ experimental study of process parameters[J]. International Journal of Advanced Manufacturing Technology, 2011, 53 (5/8): 545- 560.
17 SANGID M D , STORI J A , FERRIERA P M . Process characterization of vibrostrengthening and application to fatigue enhancement of aluminum aerospace components—part Ⅱ: process visualization and modeling[J]. International Journal of Advanced Manufacturing Technology, 2011, 53 (5/8): 561- 575.
18 陶春虎, 习年生, 张卫方, 等. 断口反推疲劳应力的新进展[J]. 航空材料学报, 2000, 20 (3): 158- 163.
doi: 10.3969/j.issn.1005-5053.2000.03.030
18 TAO C H , XI N S , ZHANG W F , et al. Resent development of fractographic restrostimation on determining fatigue stress[J]. Journal of Aeronautical Materials, 2000, 20 (3): 158- 163.
doi: 10.3969/j.issn.1005-5053.2000.03.030
19 刘新灵, 张峥, 陶春虎.疲劳断口定量分析[M].北京: 国防工业出版社, 2010.
19 LIU X L, ZHANG Z, TAO C H. Quantitative analysis of fatigue fracture[M]. Beijing: National Defense Industry Press, 2010.
[1] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[2] 王付胜, 孔繁淇, 王文平, 陈亚军. 航空铝合金原位腐蚀疲劳性能及断裂机理[J]. 材料工程, 2022, 50(6): 149-156.
[3] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[4] 宋宇航, 杨翔宁, 张泰峰, 张勇, 樊伟杰, 管宇. 7B04铝合金-CFRP300在模拟海洋大气环境下的电偶腐蚀行为[J]. 材料工程, 2022, 50(11): 155-164.
[5] 孟亦圆, 林莉, 陈军, 金士杰, 罗忠兵. 基于临界折射纵波递归定量分析的纯铁疲劳损伤无损评价[J]. 材料工程, 2022, 50(10): 172-178.
[6] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[7] 张祥林, 孟庆春, 许名瑞, 曾本银, 程小全, 孙炜. 吸湿后碳纤维复合材料正交层板拉伸疲劳性能[J]. 材料工程, 2021, 49(8): 169-177.
[8] 王敬枫, 康辉, 成中军, 谢志民, 王友善, 刘宇艳, 樊志敏. Ti3C2Tx MXene基电磁屏蔽材料的研究进展[J]. 材料工程, 2021, 49(6): 14-25.
[9] 武永丽, 熊毅, 陈正阁, 查小琴, 岳赟, 刘玉亮, 张金民, 任凤章. 超音速微粒轰击对TC11钛合金组织和疲劳性能的影响[J]. 材料工程, 2021, 49(5): 137-143.
[10] 王敏博, 姜良宝, 李晓宇, 刘家希, 李佳明, 付子怡, 颜悦. 钠钙/铝硅酸盐玻璃疲劳行为研究进展[J]. 材料工程, 2021, 49(2): 54-65.
[11] 安子乾, 舒茂盛, 程羽佳, 郭鑫, 程小全. 3钉带衬套复合材料/金属接头拉伸疲劳性能[J]. 材料工程, 2021, 49(12): 164-174.
[12] 李天, 支丹丹, 郭子浩, 郭玮琳, 张美玲, 孟凡彬. 石墨烯基气凝胶微球的研究进展[J]. 材料工程, 2021, 49(11): 14-29.
[13] 苗文卷, 曹睿, 车洪艳, 董浩, 陈剑虹. Stellite12钴基合金的疲劳性能及其断裂机理研究[J]. 材料工程, 2021, 49(1): 153-159.
[14] 陈亚军, 徐鹏达, 王付胜, 刘辰辰. 基于DIC的铝合金薄壁缺口件多轴疲劳行为[J]. 材料工程, 2021, 49(1): 168-176.
[15] 王欣, 许春玲, 李臻熙, 裴传虎, 汤智慧. 喷丸强度和表面覆盖率对TC4钛合金室温疲劳性能的影响[J]. 材料工程, 2020, 48(9): 138-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn