Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (9): 86-92    DOI: 10.11868/j.issn.1001-4381.2019.001024
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附
马开心1, 刘琪1,2, 白甜1, 路子杰1, 于黎楠1, 莫琛1,2, 赵孔银1, 刘亚2
1. 天津工业大学 分离膜与膜过程国家重点实验室, 天津 300387;
2. 天津工业大学 纺织科学与工程学院, 天津 300387
Preparation of polyester nonwovens supported CaAlg/CaSiO3@SiO2 and its adsorption for Pb2+
MA Kai-xin1, LIU Qi1,2, BAI Tian1, LU Zi-jie1, YU Li-nan1, MO Chen1,2, ZHAO Kong-yin1, LIU Ya2
1. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China;
2. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
全文: PDF(3239 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过化学交联法制备聚对苯二甲酸乙二醇酯纤维支撑的硅酸钙/海藻酸钙(PET-s-CaAlg/CaSiO3@SiO2)复合材料,其表面含介孔二氧化硅。采用3D超景深光学显微镜、扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)和比表面积测试(BET)对PET-s-CaAlg/CaSiO3@SiO2复合材料进行表征测试。从SEM照片可以看到材料表面出现150~200 nm大小的介孔SiO2,红外光谱分析表明材料表面形成了Si—OH结构,BET分析表明材料的比表面积显著增加。探讨了该纤维复合材料吸附Pb2+的各种影响因素,如Pb2+初始浓度、温度、溶液pH值。结果表明,PET-s-CaAlg/CaSiO3@SiO2对Pb2+表现出良好的吸附性能,对Pb2+的吸附动力学符合准二级动力学模型,饱和吸附量达到58.33 mg/g。Pb2+吸附过程为放热过程,低温有利于吸附。溶液pH值通过影响PET-s-CaAlg/CaSiO3@SiO2表面官能团的电离及Pb2+的水解程度影响其吸附量,其最佳吸附pH值为4.0~6.0。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马开心
刘琪
白甜
路子杰
于黎楠
莫琛
赵孔银
刘亚
关键词 硅酸钙海藻酸钙介孔SiO2聚酯无纺布Pb2+吸附    
Abstract:Calcium silicate/calcium alginate (PET-s-CaAlg/CaSiO3@SiO2) composites supported by polyethylene terephthalate fibers were prepared by chemical crosslinking. The PET-s-CaAlg/CaSiO3@SiO2 was characterized by optical microscope, Scanning Electron Microscopy (SEM), Fourier Transform infrared spectroscopy (FTIR) and BET.As can be seen in SEM, mesoporous SiO2 with the size of 150-200 nm appears on the surface of the material. FTIR shows that Si-OH structure has been formed on the surface of PET non-woven fabric.BET analysis showed that the specific surface area of the material increases significantly. The factors affecting the adsorption properties of Pb2+ were simultaneously discussed, such as the initial Pb2+ concentration, adsorption contact time, temperature and pH value. The results show excellent adsorption properties of PET-s-CaAlg/CaSiO3@SiO2for Pb2+ is obtained and the saturated adsorption amount is 58.33 mg/g. Its adsorption kinetics for Pb2+ is in accordance with the quasi second-order kinetic model. Low temperature is conducive to adsorption. The adsorption capacities of Pb2+on PET-s-CaAlg/CaSiO3@SiO2are affected by the pH of the solution through the ionization of surface functional groups and the degree of hydrolysis of Pb2+. It shows that the best adsorption capacities of Pb2+ is at the pH of 4.0-6.0.
Key wordscalcium silicate    calcium alginate    mesoporous SiO2    polyester non-woven    Pb2+ adsorption
收稿日期: 2019-11-13      出版日期: 2020-09-17
中图分类号:  TB332  
  TQ319  
通讯作者: 刘亚(1974-),女,副教授,博士,研究方向为功能非织造材料,联系地址:天津市西青区宾水西道399号天津工业大学纺织科学与工程学院非织系(300387),E-mail:liuya8353@163.com     E-mail: liuya8353@163.com
引用本文:   
马开心, 刘琪, 白甜, 路子杰, 于黎楠, 莫琛, 赵孔银, 刘亚. 聚酯无纺布支撑CaAlg/CaSiO3@SiO2的制备及其对Pb2+的吸附[J]. 材料工程, 2020, 48(9): 86-92.
MA Kai-xin, LIU Qi, BAI Tian, LU Zi-jie, YU Li-nan, MO Chen, ZHAO Kong-yin, LIU Ya. Preparation of polyester nonwovens supported CaAlg/CaSiO3@SiO2 and its adsorption for Pb2+. Journal of Materials Engineering, 2020, 48(9): 86-92.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.001024      或      http://jme.biam.ac.cn/CN/Y2020/V48/I9/86
[1] XIAO Q,ZONG Y T,LU S G.Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China[J]. Ecotoxicology & Environmental Safety, 2015, 120:377-385.
[2] GONZALEZ M, MARIAJESUS, RODRIGUEZ, et al. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration[J]. Desalination, 2006, 200(1):742-744.
[3] FU F, XIE L, TANG B, et al. Application of a novel strategy-advanced fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater[J]. Chemical Engineering Journal, 2012, 189/190:283-287.
[4] TRAN T K, LEU H J, CHIU K F, et al. Electrochemical treatment of heavy metal-containing wastewater with the removal of COD and heavy metal ions:electrochemical treatment of heavy metal containing wastewater[J]. Journal of the Chinese Chemical Society, 2017, 64(5):493-502.
[5] KARAMI H. Heavy metal removal from water by magnetite nanorods[J]. Chemical Engineering Journal, 2013, 219(3):209-216.
[6] HE X S, XI B D, ZHANG Z Y, et al. Composition, removal, redox, and metal complexation properties of dissolved organic nitrogen in composting leachates[J]. Journal of Hazardous Materials, 2015, 283(227):227-233.
[7] KELDERMAN P, OSMAN A A. Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands)[J]. Water Research, 2007, 41(18):4250-4261.
[8] MAVROV V, ERWE T, BLOCHER C, et al. Study of new integrated processes combining adsorption, membrane separation and flotation for heavy metal removal from wastewater[J]. Desalination, 2003, 157(1):97-104.
[9] BLOCHER C, DORDA J, MAVROV V, et al. Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater[J]. Water Research, 2003, 37(16):4018-4026.
[10] PLAZINSKI W, RUDZINSKI W. Modeling the effect of surface heterogeneity in equilibrium of heavy metal ion biosorption by using the ion exchange model[J]. Environmental Science & Technology, 2009, 43(19):7465-7471.
[11] DABROWSKI A, HUBICKI Z, PODKOSCIELNY P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 2004, 56(2):91-106.
[12] NASCIMENTO M, SOARES P S M, SOUZA V P D. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method[J]. Fuel, 2009, 88(9):1714-1719.
[13] CAO C Y, QU J, YAN W S, et al. Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal:adsorption property and mechanism[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2012, 28(9):4573-4579.
[14] 王艳春,曾效舒,敖志强,等. 热还原石墨烯的制备及其对重金属Pb2+的吸附性[J].材料工程, 2017, 45(10):6-11. WANG Y C, ZENG X S, AO Z Q, et al. Preparation of graphene via thermal reduction and its adsorption capacity for heavymetal Pb2+[J].Journal of Materials Engineering, 2017, 45(10):6-11.
[15] NIU Y, YING D, LI K, et al. Adsorption of heavy-metal ions from aqueous solution onto chitosan-modified polyethylene terephthalate (PET)[J]. Research on Chemical Intermediates, 2017, 43(7):4213-4225.
[16] 陈宏,刘旭,李亚男,等.应用海藻酸钠脱除重金属研究进展[J].化学通报, 2017, 80(3):241-245. CHEN H, LIU X, LI Y N, et al. Research progress in the removal of heavy metals by sodium alginate[J].Chemistry, 2017, 80(3):241-245.
[17] 樊亚男,赵孔银,魏俊富,等. 基于不同载体的染料表面印迹复合微球及其识别性能[J].功能材料, 2013, 44(13):1521-1524. FAN Y N, ZHAO K Y, WEI J F, et al. Dye surface imprinted composite microspheres based on diifferent carriers and their recognition[J].Journal of Functional Materials, 2013, 44(13):1521-1524.
[18] 陈俊,张代军,张天骄,等.溶液静电纺丝制备热塑性聚酰亚胺超细纤维无纺布[J].材料工程, 2018, 46(2):41-49. CHEN J, ZHANG D J, ZHANG T J, et al. Preparation of thermoplastic polyimide ultrafine fiber nonwovens by electrospinning[J].Journal of Materials Engineering, 2018, 46(2):41-49.
[19] 刘东,赵孔银,宋欢语,等.硅酸钙-海藻酸钙复合水凝胶膜的制备及表征[J].复合材料学报, 2017, 34(11):2401-2406. LIU D,ZHAO K Y,SONG H Y, et al. Preparation and characterization of calciumsilicate-calcium alginate composite hydrogel film[J].Acta Materiae Compositae Sinica, 2017, 34(11):2401-2406.
[20] WANG X, ZHAO K, YANG B, et al. Adsorption of dibutyl phthalate in aqueous solution by mesoporous calcium silicate grafted non-woven polypropylene[J]. Chemical Engineering Journal, 2016, 306:452-459.
[21] ZHAO K Y, CHEN T, LI D Y, et al. Preparation and characterization of mesoporous calcium silicate grafted polypropylene non-woven fabric[J]. Materials Letters, 2015, 141:110-113.
[22] ZHAO K Y, WANG X H, CHEN T, et al. Bisphenol A adsorption properties of mesoporous CaSiO3@SiO2 grafted nonwoven polypropylene fiber[J]. Industrial & Engineering Chemistry Research, 2017, 56:2549-2556.
[23] 张珊. SiO2/海藻酸钙-黄原胶互穿网络微球去除水体中Pb2+[D].上海:上海交通大学, 2013. ZHANG S. SiO2/calcium alginate-xanthan gum interpenetrating network microspheres for removal of Pb2+[D]. Shanghai:Shanghai Jiao Tong University, 2013.
[24] PEPE F, ZHANG S, XU F, et al. Silica modified calcium alginate-xanthan gum hybrid bead composites for the removal and recovery of Pb(Ⅱ) from aqueous solution[J]. The Chemical Engineering Journal, 2013, 234:33-42.
[25] FANG X,LI J, LI X, et al. Internal pore decoration with polydopamine nanoparticle on polymeric ultrafiltration membrane for enhanced heavy metal removal[J]. Chemical Engineering Journal, 2017, 314:38-49.
[26] WANG J, HUANG T, ZHANG L, et al. Dopamine crosslinked graphene oxide membrane for simultaneous removal of organic pollutants and trace heavy metals from aqueous solution[J]. Environmental Technology, 2017, 39(23):1-28.
[27] 周慧杰,杨慧敏,王硕,等. 镍改性硅藻土对废水中Pb(Ⅱ)吸附性能的研究[J]. 内蒙古科技大学学报, 2019,38(2):109-112. ZHOU H J, YANG H M, WANG S,et al. The Ni modification of diatomite and its influence on the Pb (Ⅱ) adsorption performance in waste water[J].Journal of Inner Mongolia University of Science and Technology, 2019,38(2):109-112.
[1] 何代华, 朱威, 刘翔, 刘平. 硅酸钙及硅酸钠浓度对钛合金表面生物活性涂层的影响[J]. 材料工程, 2020, 48(10): 148-156.
[2] 焦剑, 吴广力, 刘蓬, 蔡宇. MSU-J及有机化修饰对PMMA杂化材料力学性能和热性能的影响[J]. 材料工程, 2014, 0(2): 18-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn