全文下载排行

  • 一年内发表的文章
  • 两年内
  • 三年内
  • 全部

Please wait a minute...
  • 全选
    |
  • 陶瓷基复合材料专栏
    张路, 袁芳, 王文清, 董星杰, 何汝杰
    材料工程. 2022, 50(10): 15-28. https://doi.org/10.11868/j.issn.1001-4381.2021.000890
    PDF全文 (513) HTML (397)   可视化   收藏

    高超声速飞行器技术是航空航天领域发展的重要方向,对国防安全起着重要作用。高超声速飞行器能在极端环境中安全服役的关键在于飞行器的热防护材料与结构。一方面,热防护材料与结构必须能够经受恶劣的气动热环境;另一方面,热防护材料与结构还要在承载的同时尽可能降低质量以提高飞行器有效载荷。因此,需要研发兼具耐高温、轻量化、承载特性的热防护结构。本文首先综述了C/SiC陶瓷基复合材料轻量化点阵结构及其制造方法,对其在室温、高温环境下的力学行为与传热行为的研究现状进行了总结,并具体讨论了基于C/SiC陶瓷基复合材料轻量化点阵结构的耐高温、轻量化、承载、一体化热防护结构研究进展情况。最后,在新设计理论与方法、新制造技术、服役特性、多功能一体化设计与实现四个方面对面向一体化热防护的陶瓷基复合材料轻量化结构的研究挑战进行了展望。本文为高超声速飞行器新型热防护结构的发展提供一定借鉴与思考。

  • 综述
    何仁杰, 李书萍, 王许敏, 余创, 程时杰, 谢佳
    材料工程. 2022, 50(10): 38-54. https://doi.org/10.11868/j.issn.1001-4381.2021.001086
    PDF全文 (421) HTML (594)   可视化   收藏

    为了满足储能系统和电动汽车市场对于高能量密度和快充的需求,兼具高能量和高功率密度的锂离子电池得到了广泛的关注。厚电极结构设计能够显著提高电池的能量密度并降低成本,且能与各种电极材料相兼容,是发展高能量密度锂离子电池的研究热点之一。厚电极通常面临着力学性能差和反应动力学慢等问题,因此构建力学性能良好和完善的锂离子及电子传输网络的厚电极至关重要。本文首先分析了厚电极的电化学特性和关键科学问题,然后梳理了目前构建厚电极的各种策略及其优势,最后探讨了厚电极的设计原则和发展方向。

  • 综述
    李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝
    材料工程. 2022, 50(6): 49-60. https://doi.org/10.11868/j.issn.1001-4381.2021.001242
    PDF全文 (410) HTML (408)   可视化   收藏
    CSCD(5)

    树脂基复合材料具有比强度和比模量高、疲劳性能和耐腐蚀性能好等优点, 已经成为航空发动机冷端部件的应用和发展趋势。国外航空发动机用树脂基复合材料研究起步较早, 已经在多型发动机的风扇叶片、风扇机匣、外涵机匣、短舱等部件得到成熟应用, 并朝着结构形式更优、材料性能更好、制造成本更低、自动化程度更高的方向发展。国内树脂基复合材料发展基础良好, 但与国外相比在发动机上应用比例不高, 需要进一步提升设计、材料、制造、实验技术水平及工程化能力。本文重点论述国外航空发动机复合材料构件的结构、材料和工艺发展现状, 分析发展趋势, 从建立航空发动机用复合材料体系、加强应用研究和设计牵引、推进预研成果转化和自动化技术应用等方面提出相关建议。

  • 镁基复合材料专栏
    熊京鹏, 刘勇
    PDF全文 (378) HTML (592)   可视化   收藏

    界面是影响镁基复合材料综合性能的关键因素, 如何进行界面调控一直是镁基复合材料的研究热点。本文围绕镁基复合材料三种界面结构类型(共格界面、半共格界面和非共格界面), 针对影响界面性能的两个关键问题(界面润湿性和界面反应), 综述了界面优化方案的研究进展, 提出了实现良好界面结合的界面结构设计与调控准则: 良好润湿性与轻微界面反应。针对镁基复合材料的界面性能提升, 可以考虑添加稀土元素, 起到净化界面、改善润湿性的作用; 根据工程需要选择基体和增强体, 得到某方面性能优异的复合材料; 开发新的增强体表面涂层, 充分提高界面结合能力; 通过第一性原理等计算模拟方法, 深入探究界面结构与界面性能之间的关系。

  • 研究论文
    夏强, 向小倩, 廖小刚, 郑林, 李纲, 胡学步
    材料工程. 2022, 50(6): 107-116. https://doi.org/10.11868/j.issn.1001-4381.2021.000558
    PDF全文 (365) HTML (121)   可视化   收藏
    CSCD(2)

    采用草酸盐热解法制得Fe2O3,Co3O4以及CoFe2O4三种过渡金属氧化物多孔材料。借助XRD,SEM,BET,VSM和XPS等测试手段对材料的晶体结构、微观形貌、比表面积、磁学性能以及表面化学状态进行分析。选择典型的阳离子型染料亚甲基蓝(MB)作为降解模型,对三种样品催化活化过一硫酸盐(PMS)降解处理模拟印染废水的性能进行评价。结果表明:三种材料均具有分级微/纳米纤维状多孔结构,CoFe2O4因具有最大的比表面积以及Fe,Co元素间的协同效应比Fe2O3和Co3O4表现出更为优异的催化PMS降解MB溶液的性能。通过单因素实验,确定出CoFe2O4/PMS体系降解500 mL浓度为10 mg·L-1MB溶液的优化条件为:PMS用量3 mL(0.1 mol·L-1),催化剂添加量0.07 g,反应时间50 min。在此条件下,MB的降解去除率为89.77%。考察几种阴离子对CoFe2O4/PMS催化氧化体系的影响,发现Cl-,PO43-,C2O42-的存在均对MB的降解有一定的抑制作用。活性物种猝灭实验和电子顺磁共振(EPR)鉴定结果证实,1O2是CoFe2O4/PMS催化氧化体系中产生的最主要活性物种。循环使用实验结果表明,CoFe2O4具有较好的稳定性,且可磁分离回收特性使其可作为活化PMS降解印染废水的候选催化材料。

  • 增材制造专栏
    耿鹏, 陈道兵, 周燕, 文世峰, 闫春泽, 史玉升
    材料工程. 2022, 50(6): 12-26. https://doi.org/10.11868/j.issn.1001-4381.2020.001091
    PDF全文 (350) HTML (443)   可视化   收藏
    CSCD(1)

    增材制造技术自问世以来成为拓展多学科发展、实现多学科研究融合以及联结材料与产品的关键性技术, 该技术颠覆了传统加工设计和制造理念, 同时也是实现智能制造的重要方法。智能材料是对环境具有感知、可响应、自修复和自适应的一类材料。将智能材料与增材制造技术有机结合, 可实现具有感受外部刺激或环境激活的三维智能器件的一体化制造。智能材料增材制造技术被广泛应用于个性化医疗、柔性电子和软体机器人等领域。本文对增材制造中所涉及的智能材料进行综述, 介绍通过增材制造方法对金属类、高分子类和陶瓷类智能材料所带来的优势及面临的问题。增材制造技术作为实现设计、材料和结构有机融合的有效手段, 将成为推动智能材料发展的关键。

  • 目录
    材料工程. 2022, 50(9): 0-0.
  • 陶瓷基复合材料专栏
    李国青, 杨丽霞, 余敏
    材料工程. 2022, 50(10): 1-14. https://doi.org/10.11868/j.issn.1001-4381.2021.000171
    PDF全文 (342) HTML (843)   可视化   收藏

    近年来,碳-陶瓷基复合材料因其耐高温、低密度、抗腐蚀性能好、热膨胀系数低、性能可设计性强等特点成为研究热点之一,将生物态材料的多孔结构引入陶瓷基体中制备具有生物形态的碳-陶瓷复合材料的研究已引起关注。本文综述了生物态碳-陶瓷基复合材料的多孔结构、制备工艺、性能以及应用前景。强调设计材料微观结构的重要性,并详细介绍了碳-陶瓷基复合材料制备过程中的关键技术——渗透技术,包括:化学气相渗透、熔融渗透、溶胶凝胶渗透、料浆渗透、聚合物前驱体渗透、熔盐渗透六种渗透技术,并对其存在的问题提出解决方案。综述了生物态碳-陶瓷基复合材料压缩强度和断裂强度等性能,对未来的性能研究方向提出建议,指出应测试高温、强酸强碱、冷热交替环境下材料的力学性能。探讨生物态碳-陶瓷基复合材料在航空发动机叶片、汽车尾气净化器、催化剂载体三个方面的潜在应用,概述在复杂成型、较强的力学性能和热稳定性等方面的挑战和实际局限性。最后,对生物形态的碳-陶瓷基复合材料制备工艺的改进、力学性能的研究进行展望,为生物态碳-陶瓷基复合材料的研制和应用提供理论依据和参考。

  • 人体植入材料专栏
    陈倩, 赵雪阳, 尤德强, 曾戎, 于振涛, 李卫, 王小健
    材料工程. 2022, 50(11): 34-45. https://doi.org/10.11868/j.issn.1001-4381.2021.001215
    PDF全文 (335) HTML (188)   可视化   收藏
    CSCD(1)

    术后感染是临床上常见且最具挑战性的问题之一,开发新型抗菌涂层是解决该问题的有效策略,具有重要的科学及社会意义。在3D打印多孔钛骨支架表面制备了具有抗菌功能的生物活性涂层,研究发现,银(Ag)以单质的形式存在于介孔生物玻璃(MBG)涂层之中,随着Ag含量的增加(0%,0.5%,1%,1.5%,摩尔分数),介孔涂层的比表面积从377.6 m2/g下降到363.35 m2/g。体外矿化结果表明,随着Ag含量的增加,磷灰石诱导能力略微下降。抗菌实验表明,银的添加显著提高了支架的抗菌性能。添加少量的银(0.5%)即可达到100%的抗菌率。支架与MC3T3-E1细胞共培养的实验结果表明,Ag掺杂的MBG涂层具有良好细胞相容性,且添加少量银能促进MC3T3-E1细胞增殖。使用一种简单的浸渍提拉法将掺Ag的MBG涂层应用于具有复杂的多孔结构3D打印钛支架上,使得支架的矿化性能、杀菌性能以及细胞相容性显著提高。本研究为进一步开发多功能骨植入支架提供了新思路。

  • 研究论文
    王付胜, 孔繁淇, 王文平, 陈亚军
    材料工程. 2022, 50(6): 149-156. https://doi.org/10.11868/j.issn.1001-4381.2021.000466
    PDF全文 (334) HTML (201)   可视化   收藏
    CSCD(1)

    为了研究不同腐蚀条件下2024铝合金的疲劳性能,首先设计搭建原位腐蚀疲劳平台,然后分别进行无腐蚀疲劳、预腐蚀疲劳和原位腐蚀疲劳实验,分析不同腐蚀疲劳条件下2024铝合金的疲劳断裂行为,最后利用扫描电镜(SEM)表征宏、微观断口特征,探究失效机理。结果表明:相同腐蚀环境和时间下,预腐蚀和原位腐蚀疲劳寿命分别为无腐蚀疲劳寿命的92%和42%;在原位腐蚀疲劳条件下,滑移带挤入、挤出导致表面粗糙度增加,吸附较多腐蚀介质,加剧蚀坑演化,易于裂纹萌生并形成多个裂纹源。裂纹的连通形成更大尺寸的损伤,并在材料内部快速扩展。预腐蚀和原位腐蚀疲劳试件断口观察到大量脆性疲劳条带,并且原位腐蚀疲劳条带平均间距约为无腐蚀疲劳条带间距的2倍,说明原位腐蚀疲劳条件下裂纹扩展速率更快。

  • 综述
    邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝
    材料工程. 2022, 50(8): 70-81. https://doi.org/10.11868/j.issn.1001-4381.2021.000852
    PDF全文 (325) HTML (306)   可视化   收藏
    CSCD(1)

    热塑性聚醚醚酮(PEEK)复合材料具有优异的断裂韧性、抗冲击性能、耐疲劳性能,广泛应用于航空航天领域。上浆剂作为碳纤维的核心配套产品,对复合材料界面有重要影响。受分解温度限制,传统热固性碳纤维上浆剂难以满足PEEK复合材料使用,制约高性能PEEK复合材料的研制和应用,因此研制匹配PEEK复合材料的碳纤维上浆剂具有重要意义。本文分析了PEEK复合材料界面特性及上浆剂作用机理;重点介绍了改性PEEK、聚酰亚胺前驱体、聚醚酰亚胺等类型上浆剂的研究进展和成果,并对不同体系上浆剂进行分析总结;最后对PEEK复合材料用碳纤维上浆剂的研制提出建议,对上浆剂绿色环保多功能化趋势进行了展望。

  • 综述
    韩富娟, 常增花, 赵金玲, 王仁念, 丁海洋, 卢世刚
    PDF全文 (315) HTML (453)   可视化   收藏

    随着新能源汽车产业的迅速发展,消费者对电动汽车续航里程的要求不断提高。高镍三元锂离子电池因其比能量高成为电动汽车中最具应用前景的动力电池,但该电池体系依然面临着低温性能差的问题。本文综述近年来高镍三元锂离子电池低温性能的研究进展,重点总结高镍三元锂离子电池低温性能的影响因素,一方面从热力学角度分析低温下高镍三元正极材料和石墨负极材料的结构变化、电解液相态和溶剂化结构变化以及黏结剂玻璃化转变对电池低温性能的影响;另一方面从动力学角度分析高镍三元电池低温放电过程中的速率控制步骤。归纳目前高镍三元锂离子电池低温性能的主要改善措施,其中低温电解液的设计包括优化溶剂、改善锂盐及使用新型添加剂三个方面,对电极材料低温性能的改善主要是通过体相掺杂、表面包覆及材料颗粒粒径降低的方式。总结电池中低温性能研究中存在的对电池低温热力学特性研究不够明确、对电池低温动力学过程研究方式单一以及对电池中的反应顺序存在的影响认识不足等问题。

  • 研究论文
    常子金, 晏嘉陵, 齐彦昌, 崔冰, 蔡啸涛
    材料工程. 2023, 51(3): 156-165. https://doi.org/10.11868/j.issn.1001-4381.2022.000491
    PDF全文 (314) HTML (144)   可视化   收藏

    针对15Cr2Mo1耐热钢焊缝服役过程中易出现表面裂纹的问题, 采用与该钢种使用场景相似的NiCrFe合金对预制不同坡口深度来模拟裂纹深度的焊缝进行补焊。通过补焊焊缝组织及性能表征, 验证补焊修复工艺的适用性。结果表明: 不同深度裂纹补焊后均成型良好且无明显缺陷, 焊缝金属均由奥氏体胞状树枝晶及第二相析出物组成, 熔合区附近存在少量共晶铁素体, 但Ⅱ型边界与熔化边界间的白亮条带中不存在铁素体。补焊填充量的增加主要使接头的屈服强度降低, 尤其坡口深度由6.5 mm增加至13 mm时, 室温及高温屈服强度均大幅度降低15%左右, 此后降低趋势减缓。填充量增加使熔合线及熔合线外2 mm区域冲击韧性提高, 而全焊缝硬度随填充量增大呈现先减小后增大的特点, 这与补焊缝所受的拘束作用、合金元素偏析形成析出相增多有关。

  • 研究论文
    薛燕鹏, 王效光, 赵金乾, 史振学, 刘世忠, 李嘉荣
    材料工程. 2022, 50(7): 80-87. https://doi.org/10.11868/j.issn.1001-4381.2022.000082
    PDF全文 (301) HTML (169)   可视化   收藏

    为了研究1500℃和1540℃两种型壳温度对第三代单晶高温合金DD9叶片截面凝固组织的影响,采用光学显微镜、扫描电子显微镜对叶片典型截面凝固组织进行分析。结果表明:随着型壳温度的增加,DD9单晶涡轮叶片凝固组织的枝晶花样呈细小趋势,二次枝晶呈发达趋势。相同型壳温度下,叶片叶身部位的枝晶比榫头部位的枝晶更细小。随着型壳温度的增加,枝晶干和枝晶间的γ'析出相尺寸和分散度均减小,并且γ'析出相尺寸分布遵循正态分布规律。相较枝晶间区域,枝晶干区域的γ'析出相的平均尺寸减小了61%。相同型壳温度下,叶片叶身部位的γ'析出相尺寸比榫头部位的γ'析出相尺寸更细小。与截面积变小相比,提高型壳温度会使γ'析出相变小更显著。随着型壳温度的增加,γ-γ'共晶尺寸和含量减小,γ-γ'共晶组织呈葵花状和光板状两种形貌特征。

  • 综述
    马昕, 刘海韬, 孙逊
    PDF全文 (301) HTML (336)   可视化   收藏

    连续纤维强韧化陶瓷基复合材料(CMCs)是航空航天等领域关键热结构材料, 机械连接作为最可靠的连接方式之一, 是实现大尺寸复杂CMCs构件连接的重要手段。目前, CMCs连接件的研究正在快速发展, 但鲜见有关CMCs连接件的全面综述性文献。本文围绕近年来在CMCs连接件领域的研究工作, 归纳了CMCs紧固件的制备及力学性能表征方法, 系统梳理和讨论了CMCs紧固件的损伤失效机制, 从材料性能和外部环境角度出发, 重点阐述了CMCs紧固件力学性能的影响因素和规律, 并介绍了CMCs机械连接件相关研究工作, 最后对CMCs连接件在损伤规律、失效机制、有限元仿真以及连接可靠性等方面进行了展望。

  • 综述
    苏浩杰, 吴俊峰, 王召东, 成先雄, STOLBIKHINYury V
    材料工程. 2023, 51(2): 80-90. https://doi.org/10.11868/j.issn.1001-4381.2021.001201
    PDF全文 (299) HTML (324)   可视化   收藏

    以硫酸根自由基(SO4-·)为基础的高级氧化工艺被公认为是降解有机废水的有效方法之一。作为一种经济、易得的含碳材料,生物炭已逐渐应用于高级氧化领域。生物炭及其复合材料活化过硫酸盐已成为一种较有前景的有机污染物降解体系。本文分析了用于过硫酸盐活化的不同典型生物炭基催化剂最新研究进展,包括原始生物炭、过渡金属负载生物炭、非金属掺杂生物炭、金属与非金属共掺杂生物炭等。总结了其合成方法和理化性质,并分别讨论了生物炭基催化剂对过硫酸盐的活化性能与机理,以及该体系对有机污染物的降解机理。最后根据现有研究进展,分别从不同生物质来源、金属非金属共同改性生物炭技术以及降解过程中生态毒性动态变化等角度,针对降解机制探索、潜在催化剂开发和实际催化系统应用等方面,对生物炭及其复合材料进行了相关讨论并提出建议。

  • 研究论文
    倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝
    材料工程. 2022, 50(7): 102-109. https://doi.org/10.11868/j.issn.1001-4381.2021.001238
    PDF全文 (297) HTML (230)   可视化   收藏
    CSCD(2)

    针对航空发动机的需求,开展聚酰亚胺树脂基结构复合材料固化工艺与热稳定性评价研究。建立EC-380A树脂的固化动力学方程,模拟树脂固化度随温度和时间的变化。进一步结合树脂流变特性,制定并验证EC-380A复合材料固化成型工艺,制备发动机大尺寸复合材料典型件。通过热老化失重、预置缺陷层合板内部质量和力学性能,评价复合材料的热稳定性。采用330~380℃多温度分级固化的方法,复合材料可整体铺贴无缺陷热压成型。复合材料热稳定性优异,具备370~400℃耐温能力,370℃和285℃累计热老化1000 h,复合材料失重在1.3%左右;400℃热老化后,复合材料无新增缺陷、预置缺陷无扩展,表现出高温结构稳定性。

  • 铝合金专栏
    刘小辉, 刘允中
    PDF全文 (286) HTML (371)   可视化   收藏
    CSCD(3)

    高强铝合金(2×××, 7×××等)因具有比强度高、加工性好等优点而被航空航天、汽车等领域广泛应用。随着大推重比飞行器设计及汽车轻量化技术的发展, 轻质结构材料的需求日益增加, 同时零部件也面临着"薄壁化、中空化、复合化"的发展趋势, 高强铝合金的传统加工方法越来越难以满足要求。近年来, 激光选区熔化成形(selective laser melting, SLM)作为一种常见的金属增材制造技术(additive manufacturing, AM)在复杂零部件成形领域受到关注, 有望成为进一步拓宽高强铝合金应用领域的新兴技术。然而, SLM成形高强铝合金因易产生周期性热裂纹和粗大柱状晶不良组织等问题而发展缓慢, 晶粒细化是克服增材制造高强铝合金这一固有热裂问题的关键所在。本文综述了近年来SLM成形高强铝合金显微组织和力学性能调控等方面的研究进展, 归纳了不同体系合金的力学性能, 重点阐述了抑制SLM成形高强铝合金中热裂纹形成的主要策略, 包括SLM工艺参数优化以及通过微合金化或添加纳米颗粒细化晶粒等方法。指出当前研究存在的主要问题是合金成分的改变对材料综合性能以及热处理制度的影响规律尚不清晰等, 并展望了未来的发展趋势, 如SLM成形新型高强铝合金成分设计与综合性能评价、利用后处理工艺等手段进一步提升合金综合性能以及专用晶粒细化剂的设计与细化机制探究等。

  • 增材制造专栏
    朱勇强, 杨永强, 王迪, 陈峰, 邓澄, 陈晓君
    PDF全文 (279) HTML (303)   可视化   收藏

    纯铜/铜合金具有优异的导热、导电性能, 是重要的工业材料。以粉末床激光熔融为代表的激光增材制造技术具有优良的设计自由度及成形精度, 是增材制造的主流发展方向。纯铜/铜合金的粉末床激光熔融与传统加工制造技术相比, 前者能够更好地发挥铜优异的性能, 在电子电气、汽车、航空航天等导热/导电高需求领域具有广阔的应用前景。本文综述了以纯铜/铜合金为代表的激光高反射材料的粉末床激光熔融的研究现状、面临的重要问题以及相应的解决对策分析。在此基础上, 结合本课题组在纯铜/铜合金粉末床激光熔融过程的经验, 指出运用蓝光、绿光等短波长激光器进行纯铜/铜合金等高反射材料的粉末床激光熔融是未来的研究热点与发展方向。

  • 铝合金专栏
    潘士伟, 王自东, 陈晓华, 王艳林, 陈凯旋, 朱谕至
    材料工程. 2022, 50(8): 17-33. https://doi.org/10.11868/j.issn.1001-4381.2022.000087
    PDF全文 (272) HTML (234)   可视化   收藏

    锆(Zr)元素是铝合金中研究较为深入、实际应用较为广泛的微合金元素之一。由于Zr在铝中具有低的固态扩散速率且可形成低密度、高熔点、低界面错配度的Al3Zr弥散相, 因此合金展现出高温下服役的潜力。然而, Al3Zr粒子的弥散强化效果主要受到粒子低数量密度或体积分数的制约; 此外, 多元合金体系凝固、变形、热处理过程中多组元间交互作用复杂, Al3Zr弥散强化与各体系中本征相强化作用往往难以兼得, 上述问题均对合金的力学强度造成了不利的影响。本文综合近年来的相关报道, 对含Zr铝合金中Zr的存在形式、析出和粗化行为以及强化机制进行了概述; 简要介绍了复合微合金化促进Al3Zr析出机理与最新研究结果; 对某些体系铝合金中Zr微合金化的应用进行了归纳与总结, 结合当前新型耐热铝基合金发展的新趋势, 指出铝合金内Zr的微量添加对调控微结构、提升室温和高温强度的重要意义。

  • 目录
    材料工程. 2022, 50(5): 0-0.
  • 目录
    材料工程. 2022, 50(11): 0-0.
  • 研究论文
    孙小卉, 刘淑红, 卢璐, 史继诚, 徐洪峰
    材料工程. 2022, 50(9): 52-58. https://doi.org/10.11868/j.issn.1001-4381.2021.001081
    PDF全文 (259) HTML (277)   可视化   收藏

    钴(Co)基氧还原催化剂以价格低、储量高、易获得等优势成为代替铂基氧还原催化剂重要选择之一。本工作先对科琴黑进行硝酸酸化预处理,与四水合乙酸钴混合后在氨气气氛下800 ℃热解制备出Co-N/C氧还原催化剂。由红外光谱测试、联碱中和滴定与比表面积测定可知,经硝酸酸化预处理后,科琴黑表面含氧官能团数量增多,科琴黑孔径不变,中孔比例增加。XRD和TEM测试表明科琴黑和四水合乙酸钴经氨气热处理后,生成了分散均匀无团聚的Co5.47-N/C催化剂。电化学测试表明载体经预处理后,制备的Co-N/C催化剂的氧还原反应(ORR)的电催化性能更好,在碱性条件下电流密度达到了预处理前的4.2倍,在催化动力学中属于四电子转移。

  • 目录
    材料工程. 2022, 50(7): 0-0.
  • 金属增材制造技术专栏
    招晶鑫, 淡振华, 孙中刚, 张崇宏, 常辉
    PDF全文 (248) HTML (240)   可视化   收藏

    应力腐蚀开裂是不锈钢零部件失效的主要形式之一, 是材料力学和腐蚀电化学交叉领域的重要研究方向。与传统工艺制备相比, 增材制造技术制备的316L不锈钢内部微观组织复杂, 存在增材制造工艺引起的气孔、未熔合区等固有缺陷, 导致其应力腐蚀行为更为复杂。本文基于国内外关于增材制造316L不锈钢的研究实例, 综述了应力腐蚀行为特征及主控机制, 包括氢致开裂和阳极溶解两种应力腐蚀机理、穿晶断裂和沿晶解理两种作用形式, 并归纳了孪晶、异种晶相交界处、气孔及未熔合处、元素偏析等组织结构缺陷等对增材制造316L不锈钢应力腐蚀的影响。针对电化学噪声、高分辨中子衍射、三维形貌表征等三种原位测试方法在不锈钢应力腐蚀行为研究方面的现状和技术优势进行了总结。最后提出了高温辐照等严苛环境下的应力腐蚀行为特征研究, 以及裂纹尖端应力分配模型及重构准则等增材制造不锈钢应力腐蚀未来的研究方向。

  • 研究论文
    刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰
    材料工程. 2022, 50(7): 88-101. https://doi.org/10.11868/j.issn.1001-4381.2022.000002
    PDF全文 (245) HTML (249)   可视化   收藏

    综合原料的热物理性能分析和配比设计,实现了C/C复合材料载体孔隙体积的精细控制,采用热压-熔渗两步法在低温条件下制备了具有高致密、低残余Si含量特征的短碳纤维增强C/C-SiC复合材料。系统解析了C/C-SiC复合材料成型过程中的结构演变行为,研究了短纤维增强C/C-SiC复合材料的力学性能和失效机制。结果表明:多孔C/C复合材料载体孔隙的孔径呈双极分布特征,添加芳纶纤维可提高网络孔隙结构的连通性,具有显著的孔隙结构调控作用。SiC基体以网络骨架形态分布于C/C-SiC复合材料内部,与纤维束形成了强界面结合钉扎结构,高含量纤维协同作用下使C/C-SiC复合材料具有优异的综合力学性能,添加芳纶纤维可明显增加复合材料内部裂纹扩展路径,提高C/C-SiC复合材料的断裂韧性。碳纤维的面内各向同性分布及陶瓷相层间均匀分布对C/C-SiC复合材料承载、摩擦稳定性提升均具有积极作用。

  • 目录
    材料工程. 2022, 50(8): 0-0.
  • 综述
    李沛勇
    材料工程. 2023, 51(4): 67-87. https://doi.org/10.11868/j.issn.1001-4381.2021.000255
    PDF全文 (234) HTML (241)   可视化   收藏

    自1960年代以来, 全球持续开展了铝基复合材料研究, 研发了损伤容限型、耐蚀型、高强型、耐热型、低膨胀型等一系列高性能铝基复合材料。这些复合材料已应用于航空、航天、电子和交通领域。然而, 与传统金属材料和树脂基复合材料相比, 目前高性能铝基复合材料的应用市场仍然很小。本文综述了高性能铝基复合材料在增强体、铝基体、制备方法、组织、性能和应用等方面的进展, 讨论了在原材料、工程化、质量稳定性、性能数据、成本、应用和材料研制等方面存在的问题, 从应用基体研究、材料研制、工程化、应用等方面展望了未来发展方向。高性能铝基复合材料的未来发展方向包括提升原材料质量、改善工艺稳定性、降低成本、加强工程化、扩大应用、探索增材制造+模锻技术及研制新一代纳米增强和纳米/微米混杂增强铝基复合材料。

  • 铝合金专栏
    金士杰, 田鑫, 林莉
    材料工程. 2022, 50(8): 45-59. https://doi.org/10.11868/j.issn.1001-4381.2021.000633
    PDF全文 (232) HTML (191)   可视化   收藏

    铝合金搅拌摩擦焊(friction stir welding, FSW)焊接参数选择不当将会产生隧道孔、未焊透(lack of penetration, LOP)和吻接等取向复杂、细微紧贴的缺陷。首先, 本文简述了FSW焊缝与典型缺陷特征, 总结了超声检测时面临纵向分辨力低、缺陷表征不完整、材料与缺陷声阻抗接近和灵敏度不足等难点。随后, 从常规超声、超声衍射时差法(time-of-flight diffraction, TOFD)、相控阵超声检测技术和其他超声检测技术等方面综述了现有的铝合金FSW超声检测研究工作。最后, 结合超声信号处理方法和机器学习方法对研究前景进行展望: 可以通过分析和提取信号特征, 进一步提升超声检测分辨力和信噪比, 并实现取向复杂缺陷和细微紧贴缺陷的精准辨识与定量。

  • 研究论文
    米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏
    材料工程. 2022, 50(9): 120-126. https://doi.org/10.11868/j.issn.1001-4381.2021.000554
    PDF全文 (231) HTML (196)   可视化   收藏

    为制备兼具力学性能和电磁吸收性能的高带宽吸波材料,采用纳米粒子改性及物理共混法设计制备一种以聚二甲基硅氧烷为基体的羰基铁室温硫化硅橡胶复合材料,系统地分析了该复合材料的力学性能与吸波性能。结果表明: 当白炭黑质量分数为3%时,复合材料的综合力学性能最佳,便于材料加工;该复合材料为磁损耗型吸波材料,材料的衰减常数随羰基铁含量和频率呈正相关。根据仿真计算得出,在2~18 GHz下,随着复合材料厚度和羰基铁含量增加,电磁波的吸收峰都逐渐向低频移动,当复合材料的厚度为1.5 mm且羰基铁质量分数为75%时,吸波材料有效吸收带宽可以达到9.07 GHz,占目标带宽56.68%。在实际应用中可根据应用场景需求来优化配方和控制材料厚度,达到最佳的吸波效果。

  • 综述
    张聪, 刘杰, 解树一, 徐斌, 尹海清, 刘斌斌, 曲选辉
    PDF全文 (231) HTML (374)   可视化   收藏

    高熵合金因其多种合金元素以等原子比或近等原子比的组合而具有高熵效应、严重的晶格畸变、缓慢扩散以及特殊而优异的材料性质等特点,在各个领域引起极大的关注。其高强度和硬度、抗疲劳性、优异的耐腐蚀性、耐辐照性以及接近零的热膨胀系数、催化响应、热电响应及光电转换等特性,使高熵合金在许多方面有潜在的应用。高通量计算及机器学习技术迅速成为探索高熵合金巨大成分空间和综合预测材料性能的有力手段。本文介绍高通量计算与机器学习的基本概念,论述第一性原理计算、热动力学计算与机器学习在高熵合金研究中的优势,并总结它们在高熵合金成分筛选、相与组织计算以及性能预测等方面的应用研究现状。最后提出该领域目前存在的问题,并提供解决思路与未来展望,包括开发适用于高熵合金的第一性原理计算与机器学习工具、构建高质量高熵合金数据库、将高通量计算与机器学习相融合对高熵合金的力学及服役性能进行全局优化等。

  • 综述
    曾敏, 陈淋, 李星, 王明珊
    PDF全文 (225) HTML (440)   可视化   收藏

    MXene由于具有独特的层状结构、高电子导电性和丰富的表面化学特性,在储能、电磁干扰屏蔽、催化、医药等方面有广泛的应用前景。Ti3C2Tx作为最早发现的MXene材料,其固有的金属导电特征、宽层间距和丰富的表面官能团,引起了钠离子电池领域研究人员的关注。本文综述了近年来Ti3C2Tx基材料在钠离子电池中的研究进展。首先从Ti3C2Tx材料的制备展开,概述多层和少层两类Ti3C2Tx材料的结构与电化学特性。随后结合研究的应用趋势,总结两类Ti3C2Tx材料的层间距改性、掺杂改性、形貌调控等手段对其储钠行为的影响。同时也分析了两类Ti3C2Tx基复合材料应用于钠离子电池负极的结构设计思路,指出合理的结构设计对电池性能至关重要。最后对Ti3C2Tx基复合材料在钠离子电池领域中面临的问题和挑战提出了一些建议。

  • 综述
    董博, 余超, 邓承继, 祝洪喜, 丁军, 唐慧
    材料工程. 2023, 51(1): 64-75. https://doi.org/10.11868/j.issn.1001-4381.2021.001040
    PDF全文 (224) HTML (376)   可视化   收藏

    SiC陶瓷具有优异的力学性能、热学性能、抗热震性能、抗化学侵蚀性能和抗氧化性能,是热交换器设备的常用基体材料。由于原料、成型工艺、烧成工艺和烧结助剂等因素制约,SiC陶瓷含有较多气孔、晶界、杂质和缺陷,导致其常温热导率(≤270 W·m-1·K-1)低于碳化硅单晶材料(6H-SiC,490 W·m-1·K-1),且不同制备工艺下热导率存在较大差异。本文主要分析了温度、气孔、晶体结构和第二相对SiC陶瓷导热性能的影响,归纳了热压烧结法、放电等离子烧结法、无压烧结法、重结晶烧结法和反应烧结法制备高导热SiC陶瓷的特点,对优化烧结助剂种类及含量、高温热处理和添加高导热第二相等改善SiC陶瓷导热性能的主要措施进行阐述,并展望了未来高导热SiC陶瓷的研究方向,为未来制备低成本、高导热SiC质热交换器提供理论参考。

  • 综述
    汤素芳, 杨嘉, 唐鹏举, 胡成龙
    材料工程. 2023, 51(3): 17-28. https://doi.org/10.11868/j.issn.1001-4381.2021.001123
    PDF全文 (224) HTML (244)   可视化   收藏

    Cf/SiC复合材料因其低密度,高比强度,优异的抗热震、抗氧化和抗烧蚀性能以及高温强度保持率,被认为是高速飞行器的重要热防护材料之一。然而,由于碳纤维在500 ℃以上发生显著氧化导致材料逐渐失效,因此需对其进行有效的氧化防护。抗氧化涂层被认为是实现Cf/SiC复合材料长时氧化防护的有效手段。本文基于热防护系统对Cf/SiC复合材料抗氧化性能的苛刻要求,综述了现有Cf/SiC复合材料表面抗氧化涂层的研究进展,着重对抗氧化涂层制备技术及涂层体系进行了梳理。提升Cf/SiC复合材料抗氧化涂层使用温度(≥1800 ℃)及结合强度是当前需要重点解决的问题,制备更长服役时间、更高服役温度同时兼具抗氧化、抗水蒸气腐蚀乃至较好隔热性能的多功能涂层是未来发展的重要方向。

  • 综述
    刁明霞, 果春焕, 高华兵, 李海新, 董涛, 肖明颖, 杨振林, 姜风春
    材料工程. 2022, 50(12): 60-70. https://doi.org/10.11868/j.issn.1001-4381.2021.000571
    PDF全文 (224) HTML (270)   可视化   收藏

    泡沫金属复合材料是一种轻质复合材料,具有低密度、高强度、高屏蔽性能、高阻尼性能等特性,其在航空航天、钻井隔水管浮筒、人工骨等多个领域具有广泛的应用前景,备受人们关注。本文通过对现有文献的研究,介绍了泡沫金属复合材料的制备方法,深入分析泡沫金属复合材料的显微结构对其性能的影响,综述了材料的力学性能、阻尼性能、屏蔽性能、隔热等性能和机制的进展以及其在相关领域的应用,为未来泡沫金属复合材料的开发提供一定的理论依据,并对其新制备工艺、建模研究、夹芯结构以及高性能泡沫空心球的制备等研究方向进行展望。

  • 研究论文
    唐婧缘, 龙依婷, 黄旭, 蒲琳钰
    材料工程. 2022, 50(9): 59-69. https://doi.org/10.11868/j.issn.1001-4381.2021.000673
    PDF全文 (223) HTML (203)   可视化   收藏
    CSCD(1)

    为改善聚酰亚胺(PI)基复合薄膜界面相容性,达到提高其介电性能的目的,利用钛酸正丁酯的水解反应在钛酸钡纳米粒子(BT)表面包覆水合TiO2。采用聚多巴胺(PDA)进一步包覆改性粒子,制备出具有核-双壳结构的钛酸钡纳米粒子(BT@TiO2@PDA)。利用核-双壳结构形成双重梯度缓冲层,减小高介电钛酸钡纳米粒子和低介电聚合物之间由于介电常数差异造成的电场畸变。通过溶液流延法制备一系列含有不同质量分数的改性钛酸钡/聚酰亚胺复合薄膜(BT@TiO2@PDA/PI)。结果表明:核-双壳结构可以改善钛酸钡纳米粒子在聚酰亚胺基体中的分散性及二者的界面相容性。当填料质量分数为40%时,BT@TiO2@PDA/PI复合薄膜的介电常数κ提高到8.8(1 kHz),约为纯聚酰亚胺的2.7倍,为钛酸钡/聚酰亚胺复合薄膜(BT/PI)的1.4倍。介电-温度和介电-频率测试证实,BT@TiO2@PDA/PI复合薄膜具有良好的温度和频率稳定性。在100 kHz的频率范围内,复合薄膜的介电损耗均小于0.010;当填料的质量分数低于40%时,温度从25 ℃增加到160 ℃,复合薄膜介电常数的降低数值均不超过0.6(1 kHz)。

  • 陶瓷增材制造专栏
    牛方勇, 于学鑫, 赵紫渊, 赵大可, 黄云飞, 马广义, 吴东江
    PDF全文 (221) HTML (241)   可视化   收藏
    CSCD(1)

    熔体自生陶瓷是一种原料经熔化凝固获得组织组成的新型陶瓷材料,原子共用的洁净高强度结合界面使其具有接近熔点的优异高温力学性能及组织稳定性,在未来高推重比航空发动机及重型燃气轮机热端部件领域展现了巨大的应用潜力。激光直接能量沉积技术能够有效克服熔体自生陶瓷传统制备方法在周期、能耗及结构复杂度等方面的局限,为直接增材制造熔体自生陶瓷构件提供了新的解决方案,成为国内外研究热点。本文在介绍激光直接能量沉积技术工艺原理的基础上,总结了国内外利用该技术制备的不同熔体自生陶瓷的微观组织特征及其主要力学性能,并综合论述了目前针对微观组织及开裂行为调控所开展的主要研究。基于现有研究进展,对该领域的发展趋势和需要进一步解决的关键科学问题进行了探讨,指出抑制开裂与改善组织性能是目前面临的首要问题,材料和新工艺的发展是突破现有瓶颈、推动熔体自生陶瓷激光直接能量沉积技术发展和应用的关键。

  • 综述
    陈刚, 武凯, 孙宇, 贾贺鹏, 朱志雄, 胡峰峰
    材料工程. 2023, 51(1): 52-63. https://doi.org/10.11868/j.issn.1001-4381.2022.000322
    PDF全文 (207) HTML (377)   可视化   收藏

    搅拌摩擦沉积增材(additive friction stir deposition,AFSD)技术是一种新兴固相增材制造技术,采用金属棒材、粉材、丝材为增材材料,增材过程中依靠增材材料与板材摩擦产生摩擦热以及材料剧烈变形产生的塑性变形热形成黏塑性沉积层,沉积层逐层堆积形成三维实体结构件;基于其固相特征,具有熔覆增材技术不可比拟的优势,目前已成为增材制造领域的研究热点。本文从设备研制、微观组织演变、材料流动特性、力学性能变化四个方面综述了AFSD技术最新国内外研究进展;分析了该技术应用于工程实际的可行性,展望了在增材制造、材料修复、零件加固、制造金属涂层领域的应用前景;最后指出了产热机制、材料流动特性、辅助优化工艺、智能化设备研制等为未来的研究方向。

  • 镁基复合材料专栏
    李淑波, 侯江涛, 孟繁婧, 刘轲, 王朝辉, 杜文博
    材料工程. 2023, 51(1): 26-35. https://doi.org/10.11868/j.issn.1001-4381.2021.000960
    PDF全文 (202) HTML (247)   可视化   收藏
    CSCD(1)

    研究了CNTs的加入对Mg-9Al镁基复合材料时效行为的影响, 探讨了时效处理过程中微观组织、力学性能及导热性能的演变规律。结果表明: 添加的CNTs增大了基体合金中铝元素的固溶度, 并在时效过程中限制晶界的迁移, 在二者共同作用下, 促进基体中连续β-Mg17Al12相的析出, 且随着CNTs含量的增加, 连续析出的比例增大; 与基体呈共格关系的杆状连续析出相能够有效地阻碍位错运动, 提高复合材料的力学性能, 其中峰时效态0.4CNTs/Mg-9Al复合材料的屈服强度、抗拉强度、热扩散系数和热导率分别为275 MPa, 369 MPa, 34.5 mm2/s和68.4 W/(m·K), 相较于时效前Mg-9Al合金分别提升了17%, 23%, 43%和45%。

  • 综述
    刘国东, 李政, 郝利民, 巩继贤, 张健飞, 张拥军
    材料工程. 2023, 51(6): 52-65. https://doi.org/10.11868/j.issn.1001-4381.2022.000176
    PDF全文 (201) HTML (194)   可视化   收藏

    微针是一种微凸起阵列组成的微创装置, 能够穿透角质层到达表皮及真皮层, 具有安全、无痛、微创、自我给药及便捷等优点。作为一种新型微针, 水凝胶微针因其优良的性能在医学领域备受关注。水凝胶微针具有良好的生物相容性及力学性能, 在皮肤作用之后可以被完整取下而不会在体内残留聚合物; 其特有的溶胀性可以实现人体检测物微创提取及药物缓释, 未来可以在个人身体健康监测及药物控释领域发挥巨大作用。本文围绕水凝胶微针的作用机理、微针设计、制备方法及应用进展进行了综述, 重点探讨了水凝胶微针的设计参数及其在药物递送、提取监测及伤口愈合领域的应用现状, 并指出水凝胶微针在皮肤感染风险、药代动力学及佩戴舒适性等方面存在的问题。未来的重点研究方向应是与智能设备相结合, 在微针贴片上同时实现人体监测与药物智能控释。

我要投稿

创刊于1956年,月刊

ISSN:1001-4381

   CN:11-1800/TB

 主管:中国航空发动机

          集团有限公司

 主办:中国航发北京航

          空材料研究院

热点专刊

虚拟专题