Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (9): 39-44    DOI: 10.11868/j.issn.1001-4381.2014.09.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响
张宗华1, 刘刚2, 张晖3, 张忠3, 王小群1
1. 北京航空航天大学 材料科学与工程学院, 北京 100191;
2. 北京航空材料研究院 先进复合材料重点实验室, 北京 100095;
3. 国家纳米科学中心, 北京 100190
Influence of Nano-alumina Particles on Glass Transition Temperature of High-performance Epoxy Resin
ZHANG Zong-hua1, LIU Gang2, ZHANG Hui3, ZHANG Zhong3, WANG Xiao-qun1
1. Materials Science & Engineering School, Beihang University, Beijing 100191, China;
2. Science and Technology on Advanced Composites Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China;
3. National Center for Nanoscience and Technology, Beijing 100190, China
全文: PDF(2401 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用机械分散工艺制备了Al2O3/环氧复合材料,研究了颗粒含量和颗粒表面改性对复合材料玻璃化转变温度(Tg)的影响规律。结果表明:微米颗粒的加入并未改变环氧树脂的Tg,而纳米颗粒的加入则产生了较大影响。当未表面改性的Al2O3纳米颗粒含量超过10%(质量分数,下同)时,复合材料的Tg开始下降;纳米颗粒含量为18%时,相比纯树脂体系,复合材料的Tg下降了约25℃。经过辛基硅烷表面改性的纳米Al2O3颗粒与树脂的相容性得到改善,对体系的增黏效果减小,复合材料的Tg降低幅度较小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宗华
刘刚
张晖
张忠
王小群
关键词 玻璃化转变温度纳米复合材料氧化铝环氧树脂    
Abstract:Alumina/epoxy composites were prepared by mechanical mixing technique. The effect of filler content and surface modification of the nano-alumina on the glass transition temperature (Tg) of epoxy composites was investigated. The result shows that the addition of micron-sized alumina particles does not change the Tg of epoxy polymer, but the unmodified nano-alumina affects the Tg of epoxy composites. There is a significant drop in Tg of the epoxy samples when the filler content is above 10% (mass fraction). At the filler content of 18%, the Tg of the nanocomposite sample declines by as much as 25℃ in comparison with that of the neat epoxy sample. Comparatively, the surface-modified nanoparticles have better compatibility with epoxy resin than the un-modified ones, and thus showing minor thickening effect.
Key wordsglass transition temperature    nanocomposite    alumina    epoxy resin
收稿日期: 2012-10-17     
1:  TB332  
引用本文:   
张宗华, 刘刚, 张晖, 张忠, 王小群. 纳米氧化铝颗粒对高性能环氧树脂玻璃化转变温度的影响[J]. 材料工程, 2014, 0(9): 39-44.
ZHANG Zong-hua, LIU Gang, ZHANG Hui, ZHANG Zhong, WANG Xiao-qun. Influence of Nano-alumina Particles on Glass Transition Temperature of High-performance Epoxy Resin. Journal of Materials Engineering, 2014, 0(9): 39-44.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.09.007      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I9/39
[1] WETZEL B, HAUPERT F, ZHANG Qiu-ming. Epoxy nanocomposites with high mechanical and tribological performance[J]. Composites Science and Technology, 2003, 63(14): 2055-2067.
[2] 王德中. 环氧树脂生产与应用[M]. 北京:化学工业出版社, 2001.WANG De-zhong. Production and Application of Epoxy Resin[M]. Beijing: Chemical Industry Press, 2001.
[3] RAGOSTA G, ABBATE M, MUSTO P, et al. Epoxy-silica particulate nanocomposites:chemical interactions,reinforcement and fracture toughness[J]. Polymer, 2005, 46(23): 10506-10516.
[4] 孙曼灵. 环氧树脂应用原理与技术[M]. 北京:机械工业出版社, 2002.SUN Man-ling. Application of the Principles and Techniques of Epoxy Resin[M]. Beijing: China Machine Press, 2002.
[5] 张小华,徐伟箭. 无机纳米粒子在环氧树脂增韧改性中的应用[J]. 高分子通报,2005, (12):100-104.ZHANG Xiao-hua, XU Wei-jian. Application of inorganic nano-particles in epoxy resin toughening [J]. Polymer Bulletin,2005, (12):100-104.
[6] 李仙会,胡晓丹,陈瑞珠. 环氧树脂改性研究进展[J]. 热固性树脂, 2003, 18(3): 27-31.LI Xian-hui, HU Xiao-dan, CHEN Rui-zhu. Recent progress in modification of epoxy resin[J]. Thermosetting Resin, 2003, 18(3): 27-31.
[7] MA J, MO M-S, DU X-S, et al. Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems[J]. Polymer, 2008, 49(16): 3510-3523.
[8] KANG S, HONG S I, CHOE C-R, et al. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process[J]. Polymer, 2001, 42(3): 879-887.
[9] WETZEL B, ROSSO P, HAUPERT F, et al. Epoxy nanocomposites-fracture and toughening mechanisms[J]. Engineering Fracture Mechanics, 2006, 73(16): 2375-2398.
[10] ASH B J, SCHADLER L S, SIEGEL R W. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites[J]. Materials Letters, 2002, 55(1): 83-87.
[11] MIYAGAWA H, RICH M J, DRZAL L T. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers[J]. Thermochimica Acta, 2006, 442(1-2): 67-73.
[12] SUN Y, ZHANG Z, MOON K-S, et al. Glass transition and relaxation behavior of epoxy nanocomposites[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(21): 3849-3858.
[13] PETHRICK R A, MILLER C, RHONEY I. Influence of nanosilica particles on the cure and physical properties of an epoxy thermoset resin[J]. Polymer International, 2010, 59(2): 236-241.
[14] HAN J T, CHO K. Nanoparticle-induced enhancement in fracture toughness of highly loaded epoxy composites over a wide temperature range[J]. Journal of Materials Science, 2006, 41(13): 4239-4245.
[15] ZHAO H, LI R K Y. Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(4): 602-611.
[16] BARRAU S, DEMONT P, MARAVAL C, et al. Glass transition temperature depression at the percolation threshold in carbon nanotube-epoxy resin and polypyrrole-epoxy resin composites[J]. Macromolecular Rapid Communications, 2005, 26(5): 390-394.
[17] ZHANG G, RASHEVA Z, KARGER-KOCSIS J, et al. Synergetic role of nanoparticles and micro-scale short carbon fibers on the mechanical profiles of epoxy resin[J]. Exp Polym Lett, 2011, 5(10):859-872.
[18] LIU G, ZHANG H, ZHANG D J, et al. On depression of glass transition temperature of epoxy nanocomposites[J]. Journal of Materials Science, 2012, 47(19):6891-6895.
[1] 卢林刚, 陈英辉, 程哲, 杨守生, 邵高耸. 新型无卤膨胀/MH阻燃环氧树脂的制备及阻燃性能[J]. 材料工程, 2015, 43(5): 50-55.
[2] 杨淑敏, 李海涛, 顾建军, 韩伟, 杨巍, 岂云开. 彩色多孔氧化铝薄膜的制备和光学特性[J]. 材料工程, 2015, 43(4): 30-36.
[3] 曹伟伟, 朱波, 朱文滔, 王永伟, 龙国荣. 基于非等温法的耐高温环氧树脂体系固化反应动力学研究[J]. 材料工程, 2014, 0(8): 67-71.
[4] 钱鑫, 支建海, 张永刚, 杨建行. 炭纤维表面化学结构对其增强环氧树脂基复合材料性能的影响[J]. 材料工程, 2014, 0(6): 84-88.
[5] 燕绍九, 杨程, 洪起虎, 陈军洲, 刘大博, 戴圣龙. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014, 0(4): 1-6.
[6] 甘小荣, 薛方红, 黄昊, 董星龙, 汪晓允, 于洪涛, 刘艳明, 全燮. SiC/C纳米复合材料的制备与性能表征[J]. 材料工程, 2014, 0(2): 75-80,86.
[7] 邢志国, 周新远, 吕振林, 周永欣. SiC含量对环氧/SiC复合材料冲蚀磨损性能的影响[J]. 材料工程, 2013, 0(6): 67-71.
[8] 贾海鹏, 苏勋家, 侯根良, 曹小平, 毕松, 刘朝辉. 石墨烯基磁性纳米复合材料的制备与微波吸收性能研究进展[J]. 材料工程, 2013, 0(5): 89-93,100.
[9] 强小虎, 张红霞, 王彦平, 冯利邦. 强黏附性超疏水氧化铝的表面结构和黏附机理[J]. 材料工程, 2013, 0(3): 55-60.
[10] 齐亚娥, 张永胜, 胡丽天. Al2O3/Al2O3-ZrO2(3Y)层状纳米复合材料的制备与性能优化[J]. 材料工程, 2013, (2): 17-21.
[11] 冒丽, 吴华强, 张宁, 李明明, 李亭亭, 夏玲玲. 微波法制备组成可控Cu1-xNix/MWCNTs复合材料及其磁性能[J]. 材料工程, 2013, 0(10): 93-97.
[12] 李雪芹, 周玉敬, 张子龙, 刘刚, 益小苏. 光纤布拉格光栅传感器监测环氧树脂固化收缩研究[J]. 材料工程, 2012, 0(8): 73-77.
[13] 刘盈, 刘平桂, 赫丽华, 梁兴泉. α-羟基,ω-环氧基聚己内酯/环氧树脂复合体系的制备和耐热性能[J]. 材料工程, 2012, 0(7): 44-49.
[14] 王攀, 郑玉婴, 李宝铭, 张通. PVPy/MWNTs纳米复合材料的制备及其导电性能研究[J]. 材料工程, 2012, 0(7): 71-75.
[15] 张丽娇, 顾轶卓, 李敏, 刘洪新, 张佐光. 炭纤维特性与炭纤维/环氧树脂界面断裂能关联分析[J]. 材料工程, 2012, 0(7): 81-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn