Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (9): 89-93    DOI: 10.11868/j.issn.1001-4381.2014.09.015
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
利用APT研究RPV模拟钢中相界面原子偏聚特征
张植权1, 周邦新1,2, 蔡琳玲1, 王均安1,2, 刘文庆1,2
1. 上海大学 材料研究所, 上海 200072;
2. 上海大学 微结构重点实验室, 上海 200444
Characterization of Atom Segregation at Phase Interfaces in RPV Model Steel by APT
ZHANG Zhi-quan1, ZHOU Bang-xin1,2, CAI Lin-ling1, WANG Jun-an1,2, LIU Wen-qing1,2
1. Institute of Materials, Shanghai University, Shanghai 200072, China;
2. Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
全文: PDF(2781 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 提高了Cu含量的核反应堆压力容器(RPV)模拟钢经调质处理(880℃保温0.5h,水淬;660℃保温10h)以及400℃时效1000h后,采用原子探针层析技术(APT)研究了碳化物/α-Fe基体,富Cu相/α-Fe基体以及富Cu相/碳化物界面处溶质或杂质原子的偏聚特征。结果表明:在碳化物/α-Fe基体界面处P原子偏聚最明显;在富Cu相/α-Fe基体界面处Ni原子偏聚最明显,Mn原子也有微弱的偏聚;在富Cu相/碳化物界面处未发现溶质或杂质原子的偏聚现象。不同相界处原子偏聚不仅与界面本身微观结构有关,也与相界附近化学特性有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张植权
周邦新
蔡琳玲
王均安
刘文庆
关键词 核反应堆压力容器模拟钢原子偏聚原子探针层析技术相界面    
Abstract:The specimens of nuclear reactor pressure vessel (RPV) model steel with higher Cu content were firstly austenitized at 880℃ for 0.5h, water quenched, then tempered at 660℃ for 10h, and finally aged at 400℃ for 1000h. The state-of-the-art atom probe tomography (APT) was employed to investigate the segregation of solute or impurity atoms at the interfaces of carbide/α-Fe matrix, Cu-rich phase/α-Fe matrix and Cu-rich phase/carbide, respectively. The results indicate significant segregation of phosphorous at the interface of carbide/α-Fe matrix. Obvious segregation of nickel and weak segregation of manganese can be found at the interface of Cu-rich phase/α-Fe matrix. No solute or impurity atoms segregation is observed at the interface of Cu-rich phase/carbide. Atom segregation at different interfaces depends not only on the microstructure of the interfaces themselves, but also on the chemical environment in the vicinity of the interfaces.
Key wordsnuclear reactor pressure vessel    model steel    atom segregation    atom probe tomography    phase interface
收稿日期: 2013-10-12     
1:  TL341  
基金资助:国家重点基础研究发展计划(973计划)项目(2011CB610 503);国家自然科学基金重点资助项目(50931003);上海市重点学科建设资助项目(S30107)
通讯作者: 周邦新(1935- ),男,中国工程院院士,主要从事核材料研究和开发,联系地址:上海市闸北区延长路149号上海大学材料研究所(200072)     E-mail: zhoubx@shu.edu.cn
引用本文:   
张植权, 周邦新, 蔡琳玲, 王均安, 刘文庆. 利用APT研究RPV模拟钢中相界面原子偏聚特征[J]. 材料工程, 2014, 0(9): 89-93.
ZHANG Zhi-quan, ZHOU Bang-xin, CAI Lin-ling, WANG Jun-an, LIU Wen-qing. Characterization of Atom Segregation at Phase Interfaces in RPV Model Steel by APT. Journal of Materials Engineering, 2014, 0(9): 89-93.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.09.015      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I9/89
[1] HAN Q B, QIAN M L, WANG H. Investigation of solid/solid interface waves with laser ultrasonics[J]. Ultrasonics, 2006, 44: 1323-1327.
[2] CHARLEUX M, POOLE W J, MILITZER M, et al. Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel[J]. Metallurgical and Material Transactions A, 2001, 32(7): 1635-1647.
[3] FUJIWARA M, UCHIDA H, OHTA S. Effect of boron and carbon on creep strength of cold-worked type 316 stainless steel[J]. Journal of Materials Science Letters, 1994, 13(8): 557-559.
[4] LAHA K, KYONO J, SASAKI T, et al. Improved creep strength and creep ductility of type 347 austenitic stainless steel through the self-healing effect of boron for creep cavitation[J]. Metallurgical and Material Transactions A, 2005, 36(2): 399-409.
[5] ASARO R J, TILLER W A. Interface morphology development during stress corrosion cracking[J]. Metallurgical Transactions, 1972, 3(7): 1789-1796.
[6] MILLER M K, RUSSELL K F, SOKOLOV M A, et al. APT characterization of irradiated high nickel RPV steels[J]. Journal of Nuclear Materials, 2007, 361(2-3): 248-261.
[7] MILLER M K, RUSSELL K F, SOKOLOV M A, et al.Atom probe tomography characterization of radiation-sensitive ks-01 weld[J]. Journal of Nuclear Materials, 2003, 320(3): 177-183.
[8] ACOSTA B, DEBARBERIS L, SEVINI F, et al.Cu effects on radiation embrittlement of Ni-containing complex model alloys and the related potentials of the thermoelectric method[J]. NDT&E International, 2004, 37(4): 321-324.
[9] 佟振峰,林虎,宁广胜,等. 低铜合金反应堆压力容器钢辐照脆化预测评估模型[J]. 原子能科学技术,2009, 43(增刊1):103-108.TONG Zhen-feng, LIN Hu, NING Guang-sheng, et al. Prediction model on irradiation embrittlement of low copper alloy reactor pressure vessel steels[J]. Atomic Energy Science and Technology, 2009, 43(Suppl 1): 103-108.
[10] STYMAN P D, HYDE J M, WILFORD K, et al. Precipitation in long term thermally aged high copper, high nickel model RPV steel welds[J]. Progress in Nuclear Energy, 2012, 57: 86-92.
[11] HYDE J M, SHA G, MARQUIS E A, et al. A comparison of the structure of solute clusters formed during thermal ageing and irradiation[J]. Ultramicroscopy, 2011, 111(6): 664-671.
[12] PAREIGE P, RUSSELL K F, STOLLER R E, et al. Influence of long-term thermal aging on the microstructural evolution of nuclear reactor pressure vessel materials: an atom probe study[J]. Journal of Nuclear Materials, 1997, 250(2-3): 176-183.
[13] MILLER M K. Atom Probe Tomography: Analysis at the Atomic Level[M]. New York: Kliwer Academic/Plenum Publishers, 2000.
[14] MILLER M K, SOKOLOV M A, NANSTAD R K, et al. APT characterization of high nickel RPV steels[J]. Journal of Nuclear Materials, 2006, 351(1-3): 187-196.
[15] XU G, CHU D F, CAI L L, et al. Investigation on the precipitation and structural evolution of Cu-rich nanophase in RPV model steel[J]. Acta Metallurgica Sinica, 2011, 47(7): 905-911.
[16] LU Z, FAULKNER R G, FLEWITT P E J. The role of irradiation-induced intergranular phosphorous segregation in the ductile-to-brittle transition temperature in ferritic steels[J]. Materials Science and Engineering: A, 2006, 437(2): 306-312.
[17] CABALLERO F G, MILLER M K, GARCIA-MATEO C. Carbon supersaturation of ferrite in a nanocrystalline bainitic steel [J]. Acta Materialia, 2010, 58(7): 2338-2343.
[18] 徐刚,蔡琳玲,冯柳,等. 利用APT对RPV模拟钢中界面上原子偏聚特征的研究[J]. 金属学报,2012, 48(7): 789-796. XU Gang, CAI Lin-ling, FENG Liu, et al. Segregation of atoms on the interfaces in the RPV model steel studied by APT[J]. Acta Metallurgica Sinica, 2012, 48(7): 789-796.
[19] TAKEUCHI T, KAMEDA J, NAGAI Y, et al. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography[J]. Journal of Nuclear Materials, 2011, 415(2): 198-204.
[1] 冯柳, 周邦新, 彭剑超, 王均安. RPV模拟钢中纳米富Cu析出相的复杂晶体结构表征[J]. 材料工程, 2015, 43(7): 80-86.
[2] 孙力玲, 董连科, 张静华, 胡壮麒. 分形理论在定向凝固固-液界面研究中的应用 [J]. 材料工程, 1994, 0(4): 24-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn