Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (11): 107-112    DOI: 10.11868/j.issn.1001-4381.2014.11.019
  综述 本期目录 | 过刊浏览 | 高级检索 |
连续纤维增强陶瓷基复合材料界面层研究进展
卢国锋1,2, 乔生儒1, 许艳3
1. 西北工业大学 超高温复合材料国家重点实验室, 西安 710072;
2. 渭南师范学院 化学与生命科学学院, 陕西 渭南 714000;
3. 渭南师范学院 图书馆, 陕西 渭南 714000
Progress in Research on Interface Layer of Continuous Fiber Reinforced Ceramic Matrix Composites
LU Guo-feng1,2, QIAO Sheng-ru1, XU Yan3
1. National Key Laboratory of Thermostructure Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China;
2. College of Chemistry and Life Science, Weinan Normal University, Weinan 714000, Shaanxi, China;
3. Weinan Normal University Library, Weinan 714000, Shaanxi, China
全文: PDF(874 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 界面层是陶瓷基复合材料中的关键组成部分,因对复合材料的各项性能都有重要影响,而成为陶瓷基复合材料研究的重点之一。本文在叙述界面层功能的基础上,分别对结构陶瓷基复合材料和抗氧化陶瓷基复合材料的界面层研究现状进行讨论,分析了研究中存在的问题,指出了未来研究的方向和重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢国锋
乔生儒
许艳
关键词 界面层陶瓷基复合材料结构材料抗氧化    
Abstract:The interface layer is a key component of the ceramic matrix composite (CMCs), and has an important influence on the properties of the CMCs, and become one of the key points of the research on CMCs. Based on the description of the function of interface layer, the research status on the interface layer of the structural CMCs and oxidation resistant CMCs is discussed; the problems in the research work are analyzed, the direction and focus of future research are pointed out.
Key wordsinterface layer    CMCs    structural material    antioxidation
收稿日期: 2013-04-22      出版日期: 2014-11-20
1:  TB332  
基金资助:国家自然科学基金(50772089);渭南师范学院项目(13YKS003)
通讯作者: 卢国锋(1975-), 男, 副教授, 博士, 研究方向为陶瓷基复合材料, 联系地址:陕西省渭南市渭南师范学院化学与生命科学学院(714099).     E-mail: luguof.student@sina.com
引用本文:   
卢国锋, 乔生儒, 许艳. 连续纤维增强陶瓷基复合材料界面层研究进展[J]. 材料工程, 2014, 0(11): 107-112.
LU Guo-feng, QIAO Sheng-ru, XU Yan. Progress in Research on Interface Layer of Continuous Fiber Reinforced Ceramic Matrix Composites. Journal of Materials Engineering, 2014, 0(11): 107-112.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.11.019      或      http://jme.biam.ac.cn/CN/Y2014/V0/I11/107
[1] KRENKEL W, BERNDT F. C/C-SiC composites for space applications and advanced friction systems[J]. Mater Sci Eng A, 2005, 412(1-2): 177-181.
[2] OHNABE H, MASAKI S, ONOZUKA M, et al. Potential application of ceramic matrix composites to aero-engine components[J]. Compos Part A, 1999, 30(4): 489-496.
[3] 郭洪宝, 王波, 矫桂琼, 等. 2D-Cf/SiC复合材料缺口试件拉伸力学行为研究[J]. 材料工程, 2013, (5): 83-88. GUO Hong-bao, WANG Bo, JIAO Gui-qiong, et al. Tensile mechanical behavior of notched 2D-Cf/SiC composites[J]. Journal of Materials Engineering, 2013, (5): 83-88.
[4] NASLAIN R. The design of the fiber-matrix interfacial zone in ceramic matrix composites[J]. Compos Part A, 1998, 29A:1145-1155.
[5] APPIAH K A, WANG Z L, LACKEY W J. Characterization of interfaces in C fiber-reinforced laminated C-SiC matrix composites[J]. Carbon, 2000, 38: 831-838.
[6] MARSHALL D B, DAVIS J B, MORGAN P E D, et al. Interface materials for damage-tolerant oxide composites[J]. Key Eng Mater, 1997, 127-131: 27-36.
[7] TAYLOR R. Carbon matrix composites[A]. KELLY A, ZWEBEN C. Comprehensive Composite Materials[M]. Oxford, UK: Elsevier Science Ltd, 2000. 1-19.
[8] ZHANG J, LUO R, ZHANG Y, et al. Effect of isotropic interlayers on the mechanical and thermal properties of carbon/carbon composites[J]. Mater Lett, 2010, 64(13): 1536-1538.
[9] ARAKI H, YANG W, SUZUKI H, et al. Fabrication and flexural properties of Tyranno-SA/SiC composites with carbon interlayer by CVI[J]. J Nucl Mater A, 2004, 329-333: 567-571.
[10] XU Y, ZHANG L, CHENG L, et al. Microstructure and mechanical properties of three-dimensional carbon/silicon carbide composites fabricated by chemical vapor infiltration[J]. Carbon, 1998, 36: 1051-1056.
[11] LIU H, CHENG H, WANG J, et al. Microstructural investigations of the pyrocarbon interphase in SiC fiber-reinforced SiC matrix composites[J]. Mater Lett, 2009, 63 (23): 2029-2031.
[12] AHMED A S, RAWLINGS R D, ELLACOTT S D, et al. Microstructural and compositional characterisation of the pyrocarbon interlayer in SiC coated low density carbon/carbon composites [J]. J Eur Ceram Soc, 2011, 31(1-2): 189-197.
[13] YAN M, SONG W, CHEN Z. In situ growth of a carbon interphase between carbon fibres and a polycarbosilane-derived silicon carbide matrix [J]. Carbon, 2011, 49(8): 2869-2872.
[14] LIU H, TIAN H. Mechanical and microwave dielectric properties of SiCf/SiC composites with BN interphase prepared by dip-coating process [J]. J Eur Ceram Soc, 2012, 32(10): 2505-2512.
[15] DING D, ZHOU W, LUO F, et al. Dip-coating of boron nitride interphase and its effects on mechanical properties of SiCf/SiC composites [J]. Mater Sci Eng A, 2012, 543: 1-5.
[16] UDAYAKUMAR A, STALIN M, VENKATESWARLU K. Effect of CVD SiC seal coating on the mechanical properties of Cf/SiC composites generated through CVI [J]. Surf Coat Technol, 2013, 219: 75-81.
[17] WU H, CHEN M, WEI X, et al. Deposition of BN interphase coatings from B-trichloroborazine and its effects on the mechanical properties of SiC/SiC composites [J]. Appl Surf Sci, 2010, 257(4): 1276-1281.
[18] UDAYAKUMAR A, RAOLE P M, BALASUBRAMANIAN M. Synthesis of tailored 2D SiCf/SiC ceramic matrix composites with BN/C interphase through ICVI [J]. J Nucl Mater, 2011, 417(1-3): 363-366.
[19] UDAYAKUMAR A, GANESH A S, RAJA S, et al. Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI[J]. J Eur Ceram Soc, 2011, 31(6): 1145-1153.
[20] NASLAIN R, DUGNE O, GUETTE A, et al. Boron nitride interphase in ceramic-matrix composites [J]. J Am Cerom Soc, 1991, 74(10): 2482-2488.
[21] ZHONG Y, HU W, ELDRIDGE J I, et al. Fiber push-out tests on Al2O3 fiber-reinforced NiAl-composites with and without hBN-interlayer at room and elevated temperatures[J]. Mater Sci Eng A, 2008, 488(1-2): 372-380.
[22] CINIBULK M K. Hexaluminates as a cleavable fiber-matrix interphase: synthesis, texture development, and phase compatibility [J]. J Eur Ceram Soc, 2000, 20(5): 569-582.
[23] REIG P, DEMAZEAU G, NASLAIN R. KMg2AlSi4O12 phyllosiloxide as potential interphase material for ceramic matrix composites Part 1 Chemical compatibility [J]. J Mater Sci, 1997, 32(16): 4189-4194.
[24] REIG P, DEMAZEAU G, NASLAIN R. KMg2AlSi4O12 phyllosiloxide as potential interphase material for ceramic matrix composites Part II Coated fibres and model composites [J]. J Mater Sci, 1997, 32(16): 4195-4200.
[25] YU H, ZHOU X, ZHANG W, et al. Mechanical properties of 3D KD-I SiCf/SiC composites with engineered fibre-matrix interfaces [J]. Compos Sci Technol, 2011, 71(5): 699-704.
[26] CHENG L F, XU Y, ZHANG L, et al. Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500℃ [J]. Mater Sci Eng A, 2001, 300: 219-225.
[27] SHIMODA K, PARK J S, HINOKI T, et al. Influence of pyrolytic carbon interface thickness on microstructure and mechanical properties of SiC/SiC composites by NITE process [J]. Compos Sci Technol, 2008, 68(1): 98-105.
[28] MEI H, BAI Q, SUN Y, et al. The effect of heat treatment on the strength and toughness of carbon fiber/silicon carbide composites with different pyrolytic carbon interphase thicknesses [J]. Carbon, 2013, 57: 288-297.
[29] CHEN S, ZHANG Y, ZHANG C, et al. Effects of SiC interphase by chemical vapor deposition on the properties of C/ZrC composite prepared via precursor infiltration and pyrolysis route [J]. Materials & Design, 2013, 46: 497-502.
[30] DING D, ZHOU W, LUO F, et al. The effects of CVD SiC interphase on mechanical properties of KD-1 SiC fiber reinforced aluminum phosphate composites [J]. Mater Sci Eng A, 2012, 534: 347-352.
[31] PASQUIER S, LAMON J, NASLAIN R. Tensile static fatigue of 2D SiC/SiC composites with multilayered (PyC-SiC)n interphases at high temperatures in oxidizing atmosphere [J]. Compos Part A, 1998, 29: 1157-1164.
[32] ZHU Y, HUANG Z, DONG S, et al. Correlation of PyC/SiC interphase to the mechanical properties of 3D HTA C/SiC composites fabricated by polymer infiltration and pyrolysis [J]. New Carbon Materials, 2007, 22(4): 327-331.
[33] TAGUCHI T, NOZAWA T, IGAWA N, et al. Fabrication of advanced SiC fiber/F-CVI SiC matrix composites with SiC/C multi-layer interphase [J]. J Nucl Mater, 2004, 329-333A: 572-576.
[34] BERTRAND S, DROILLARD C, PAILLER R, et al. TEM structure of (PyC/SiC)n multilayered interphases in SiC/SiC composites [J]. J Eur Ceram Soc, 2000, 20(1): 1-13.
[35] YANG W, ARAKI H, KOHYAMA A, et al. Effects of SiC sub-layer on mechanical properties of Tyranno-SA/SiC composites with multiple interlayers [J]. Ceram Int, 2005, 31(4): 525-531.
[36] WANG Z, DONG S, DING Y, et al. Mechanical properties and microstructures of Cf/SiC-ZrC composites using T700SC carbon fibers as reinforcements [J]. Ceram Int, 2011, 37(3): 695-700.
[37] YU H, ZHOU X, ZHANG W, et al. Mechanical behavior of SiCf/SiC composites with alternating PyC/SiC multilayer interphases [J]. Materials & Design, 2013, 44: 320-324.
[38] LONG Y, JAVED A, ZHAO Y, et al. Fiber/matrix interfacial shear strength of C/C composites with PyC-TaC-PyC and PyC-SiC-TaC-PyC multi-interlayers [J]. Ceram Int, 2013, 39(6): 6489-6496.
[39] ZENG F, XIONG X, LI G, et al. Microstructure and mechanical properties of 3D fine-woven punctured C/C composites with PyC/SiC/TaC interphases [J]. Trans Nonferrous Met Soc China, 2009, 19(6): 1428-1435.
[40] XIONG X, WANG Y, CHEN Z, et al. Mechanical properties and fracture behaviors of C/C composites with PyC/TaC/PyC, PyC/SiC/TaC/PyC multi-interlayers [J]. Solid State Sciences, 2009, 11(8): 1386-1392.
[41] CHEN Z, XIONG X, LI G, et al. Ablation behaviors of carbon/carbon composites with C-SiC-TaC multi-interlayers [J]. Applied Surface Science, 2009, 255(22): 9217-9223.
[42] ZHU Y, PEI B, YUAN M, et al. Microstructure and properties of Cf/SiC composites with thin SiCN layer as fiber-protecting coating [J]. Ceram Int, 2013, 39(6): 7101-7106.
[43] BLANKS K S, KRISTOFFERSSON A, CARLSTROM E, et al. Crack deflection in ceramic laminates using porous interlayers [J]. J Eur Ceram Soc, 1998, 18(13): 1945-1951.
[44] MA J, WANG H, WENG L, et al. Effect of porous interlayers on crack deflection in ceramic laminates [J]. J Eur Ceram Soc, 2004, 24(5): 825-831.
[45] HOLMQUIST M, LUNDBERG R, SUDRE O, et al. Alumina/alumina composite with a porous zirconia interphase-processing, properties and component testing [J]. J Eur Ceram Soc, 2000, 20: 599-606.
[46] DING D, ZHOU W, LUO F, et al. Mechanical properties and oxidation resistance of SiCf/CVI-SiC composites with PIP-SiC interphase [J]. Ceram Int, 2012, 38(5): 3929-3934.
[47] LIU H, CHENG H, WANG J, et al. Effects of the single layer CVD SiC interphases on the mechanical properties of the SiCf/SiC composites fabricated by PIP process [J]. Ceram Int, 2010, 36(7): 2033-2037.
[48] REBILLAT F, GUETTE A, ESPITALIER L, et al. Oxidation resistance of SiC/SiC micro and minicomposites with a highly crystallized BN interphase [J]. J Eur Ceram Soc, 1998, 18(13): 1809-1819.
[49] TRESSLER R E. Recent developments in fibers and interphases for high temperature ceramic matrix composites[J]. Compos Part A, 1999, 30: 429-437.
[50] LU G, QIAO S, ZHANG C, et al. Oxidation protection of C/Si-C-N composite by a mullite interphase[J]. Compos Part A, 2008, 39 (9): 1467-1470.
[51] LU G, QIAO S, ZHANG C, et al. Oxidation behaviors and mechanisms of C/Si-C-N with a mullite interlayer[J]. Adv Compos Mater, 2011, 20(2): 179-195.
[52] LABRUQUERE S, BLANCHARD H, PAILLER R, et al. Enhancement of the oxidation resistance of interfacial area in C/C composites. Part II: oxidation resistance of B-C, Si-B-C and Si-C coated carbon preforms densified with carbon[J]. J Eur Ceram Soc, 2002, 22(7): 1011-1021.
[53] LU G, JIAO G. Balance the oxidation resistance and mechanical properties of C/Si-C-N composite by a Si-O-C interphase[J]. Compos Interfaces, 2012, 19(2): 83-91.
[1] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[2] 高俊国, 陆峰, 王长亮, 郭孟秋, 崔永静. 氧燃充枪比对爆炸喷涂CoCrAlYTa涂层抗氧化性能的影响[J]. 材料工程, 2013, 0(4): 28-33.
[3] 熊华平, 毛建英, 陈冰清, 王群, 吴世彪, 李晓红. 航空航天轻质高温结构材料的焊接技术研究进展[J]. 材料工程, 2013, 0(10): 1-12.
[4] 李伟, 陈朝辉, 王松. 先进推进系统用主动冷却陶瓷基复合材料结构研究进展[J]. 材料工程, 2012, 0(11): 92-96.
[5] 李桂花, 邹勇, 邹增大, 魏希旺, 田宝林. 激光熔覆原位生成Nb2(C,N)及V8C7陶瓷粒子增强铁基金属涂层[J]. 材料工程, 2012, 0(1): 29-33.
[6] 卢国锋, 乔生儒, 焦更生, 徐浩龙. C/Mullite/Si-C-N复合材料的组织结构及其弯曲行为研究[J]. 材料工程, 2011, 0(9): 82-86,91.
[7] 钱庆生, 李海, 王芝秀, 王秀丽, 史志欣. HP40Nb钢热浸镀Al-Si高温氧化行为及组织研究[J]. 材料工程, 2011, 0(8): 52-57.
[8] 陈进, 张海燕, 刘晓平, 李丽萍. 碳包铜纳米颗粒的制备及其性能研究[J]. 材料工程, 2011, 0(7): 31-33,89.
[9] 黄敏, 李克智, 李贺军, 付前刚, 王宇, 吕祥鸿. 炭/炭复合材料硼硅酸盐玻璃涂层制备及性能研究[J]. 材料工程, 2010, 0(7): 78-81,86.
[10] 卢国锋, 乔生儒, 弓满锋, 侯军涛, 焦更生. C/Si-C-N复合材料的制备及其氧化行为研究[J]. 材料工程, 2010, 0(3): 13-17.
[11] 陈刘定, 童小燕, 姚磊江, 程起有. 开孔对平纹编织C/SiC陶瓷基复合材料力学行为的影响[J]. 材料工程, 2009, 0(9): 71-74.
[12] 李友生, 邓建新, 张辉, 李剑峰. 硬质合金刀具材料的抗氧化性能研究[J]. 材料工程, 2009, 0(2): 34-37,42.
[13] 王志平, 黄继华, 班永华, 熊进辉, 张华, 赵兴科. 反应复合钎焊Cf-SiC/Cu-Ti-C/TC4接头组织结构[J]. 材料工程, 2008, 0(9): 36-39.
[14] 刘旭, 宋尽霞, 李树索, 韩雅芳. NiCoCrAlY(Si)梯度涂层对Ni3Al基单晶合金IC6SX抗氧化性能的影响[J]. 材料工程, 2008, 0(5): 52-56.
[15] 郑晓慧, 堵永国, 肖加余, 胡君遂, 吴剑锋, 芦玉峰. 自愈合碳纤维增强陶瓷基复合材料研究进展[J]. 材料工程, 2008, 0(5): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn