Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (1): 82-88    DOI: 10.11868/j.issn.1001-4381.2015.01.015
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
加氢反应器环境服役的2.25Cr1Mo钢性能退化研究
王洁, 聂宝华, 蔡成, 张峥
北京航空航天大学 材料科学与工程学院, 北京 100191
Performance Degradation of 2.25Cr1Mo Steel Served in Hydrogenation Reactor
WANG Jie, NIE Bao-hua, CAI Cheng, ZHANG Zheng
Materials Science and Engineering School, Beihang University, Beijing 100191, China
全文: PDF(6221 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过对比服役前后加氢反应器挂块母材和焊缝的力学性能,对2.25Cr1Mo钢的服役退化程度进行了分析.运用金相显微镜、扫描电子显微镜对服役材料的微观组织及断口形貌进行了观察和分析.结果表明:运行12万小时挂块的力学性能下降较大,韧脆转变温度升高,并在晶界及碳化物处出现裂纹;部分碳化物粗化,呈链状分布在晶界附近,造成晶界弱化;基体合金元素含量降低,促进了P的晶界偏聚,降低了材料的回火抗力.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王洁
聂宝华
蔡成
张峥
关键词 加氢反应器力学性能微观组织    
Abstract:The mechanical properties of original and hanging over hydrogenation reactor 2.25Cr1Mo steel were investigated in order to analyze the material degradation. The microstructure and fracture morphology of original and in-service alloy were observed by metallographic microscope and scanning electron microscope. The results show that the 120000h hanging time leads to obvious performance degradation. The ductile to brittle transition temperature of 2.25Cr1Mo steel increases. A number of cracks appear at the grain boundary and carbides. Carbides tend to chain distribution and coarsening which results in grain boundary weakness. The decrease of matrix alloying elements content causes grain boundary segregation of phosphorus and lower tempering resistance.
Key wordshydrogenation reactor    mechanical property    microstructure
收稿日期: 2013-05-03     
1:  TG142  
通讯作者: 张峥(1965-),男,教授,主要从事材料的失效分析预测预防研究工作,联系地址:北京市海淀区学院路37号北京航空航天大学材料学院(100191),zhangzh@buaa.edu.cn     E-mail: zhangzh@buaa.edu.cn
引用本文:   
王洁, 聂宝华, 蔡成, 张峥. 加氢反应器环境服役的2.25Cr1Mo钢性能退化研究[J]. 材料工程, 2015, 43(1): 82-88.
WANG Jie, NIE Bao-hua, CAI Cheng, ZHANG Zheng. Performance Degradation of 2.25Cr1Mo Steel Served in Hydrogenation Reactor. Journal of Materials Engineering, 2015, 43(1): 82-88.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.01.015      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I1/82
[1] 程丽华.石油炼制工艺学[M].北京:中国石化出版社,2005.CHENG L H. Petroleum Refining Technology [M].Beijing: China Petrochemical Press,2005.
[2] 李保锋,蔡连波,赵晓青,等. 加氢反应器安全运行探讨[J].石油化工腐蚀与防护,2009,26(4):5-8.LI B F, CAI L B, ZHAO X Q, et al. Safe operation analysis of hydroprocessing reactors[J]. Corrosion and Protection in Petrochemical Industry, 2009,26(4):5-8.
[3] MOSS C J, KELLY P M. The mechanisms and detection of embrittlement in Cr-Mo pressure vessel steels[J]. Fatigue Fract Eng Mater Struct,1994,17(3):369-380.
[4] YU J, McMAHON C J. The effects of composition and carbide precipitation on temper embrittlement of 2.25Cr1Mo steel[J]. Metallurgical Transactions A,1980,11(2):277-289.
[5] NAGAO A, KURAMOTO S, ICHITANI K,et al. Visualization of hydrogen transport in high strength steels affected by stress fields and hydrogen trapping[J]. Scripta Materialia,2001,45(10):1227-1232.
[6] YOSHINO K, McMAHON C J. The cooperative relation between temper embrittlement and hydrogen embrittlement in a high strength steel[J]. Metallurgical Transactions,1974,5(2):363-370.
[7] PILLOT S,CHAUVY C,CORRE S,et al. Effect of temper and hydrogen embrittlement on mechanical properties of 2.25Cr-1Mo steel grades application to minimum pressurizing temperature (MPT) issues[J]. International Journal of Pressure Vessels and Piping,2013,110:17-23.
[8] JIA R L. Study on the additive effect of hydrogen embrittlement and temper brittleness on 2.25Cr1Mo steel[J].Petrochemical Machinery,1987,16(10):4-10.
[9] SHIMAZU H, KONOSU S, TANAKA Y,et al. Combined effect of temper and hydrogen embrittlement on threshold for hydrogen-induced fracture in Cr-Mo steels[J]. Journal of Pressure Vessel Technology,2013,135(2):021406.
[10] WATANABE J.Temper embrittlement of 2.25Cr1Mo pressure vessel steel[A]. 29th Annual Petroleum Mechanical Engineering Conference[C].Dallas, TX:American Society of Mechanical Engineering,1974.
[11] CURRY D A. Grain-size dependence of cleavage fracture toughness in mild steel[J].Nature,1978,276(2):50-56.
[12] SHEN D D, SONG S H, YUAN Z X,et al. Effect of solute grain boundary segregation and hardness on the ductile-to-brittle transition for a CrMo low-alloy steel[J]. Materials Science and Engineering:A, 2005,394(1): 53-59.
[13] 禇武扬,肖纪美,李世琼. 钢中氢致裂纹机构研究[J].金属学报,1981,17(1):115-119. CHU W Y, XIAO J M, LI S Q. Mechanism of hydrogen cracking in steels[J]. Acta Metallurgica Sinica, 1981,17(1):115-119.
[14] 杨瑞成,王晖,郑丽平,等. 12Cr1MoV钢高温时效过程中组织结构的演变[J].金属热处理,2002,27(9):18-22. YANG R C, WANG H, ZHENG L P, et al. Evolution of microstructures of 12Cr1MoV steel during high temperature aging [J]. Heat Treatment of Metals, 2002,27(9):18-22.
[15] MURZA J C, McMAHON C J. The effects of composition and microstructure on temper embrittlement in 2.25Cr1Mo steel[J]. J Eng Mater Technol,1980,102(4):369-375.
[16] IVANI De SOUZA BOTT,LU?S FELIPE GUIMARAES De SOUZA, JORGE CARLOS FERREIRA JORGE,et al.Comparison between real and simulated degradation in a 1.25% Cr0.5% Mo steel for high temperature service[J]. Materials Characterization,2005,54(3):206-215.
[1] 林翠, 赵晴, 文庆杰. TC1钛合金的腐蚀加工及其对基体性能影响[J]. 材料工程, 2015, 43(7): 48-55.
[2] 李龙, 祝志超, 张心金, 刘会云. 利用控轧控冷技术开发热轧不锈钢复合板的实验研究[J]. 材料工程, 2015, 43(7): 62-67.
[3] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[4] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
[5] 刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
[6] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[7] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[8] 彭建, 彭毅, 韩韡, 潘复生. 挤压温度对Mg-2Zn-Mn-0.5Nd镁合金组织和性能的影响[J]. 材料工程, 2015, 43(3): 23-27.
[9] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[10] 刘鹏, 李士凯, 张元彬, 刘燕. 非晶增强铝基复合材料的微观结构及腐蚀性能[J]. 材料工程, 2015, 43(3): 67-71.
[11] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[12] 李万青, 魏红梅, 何鹏, 高丽娇, 林铁松, 李小强, 赫兰春. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J]. 材料工程, 2015, 43(1): 37-43.
[13] 王艳晶, 柳乐, 宋玫锦. Y微合金化高铌TiAl基合金微观组织研究[J]. 材料工程, 2015, 43(1): 66-71.
[14] 杜红燕, 李亚江. AZ31/7005异种材料填丝GTAW焊接接头的组织与性能[J]. 材料工程, 2014, 0(9): 14-19.
[15] 娄长胜, 芦馨, 金光, 高景龙, 张罡. 强流脉冲电子束表面处理对TiAlN涂层刀具的组织结构及性能的影响[J]. 材料工程, 2014, 0(8): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn