Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (2): 35-40    DOI: 10.11868/j.issn.1001-4381.2015.02.006
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
电场作用下AZ31B/Cu扩散界面的结构及性能
董凤, 陈少平, 胡利方, 樊文浩, 孟庆森
太原理工大学 材料科学与工程学院, 太原 030024
Structure and Properties of AZ31B/Cu Diffusion Interface Under Electric Field
DONG Feng, CHEN Shao-ping, HU Li-fang, FAN Wen-hao, MENG Qing-sen
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
全文: PDF(2452 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用电场激活扩散连接技术(FADB)实现了AZ31B/Cu的扩散连接.利用SEM、EDS和TEM分析了扩散溶解层的显微组织、相组成和界面元素分布.采用万能试验机对连接界面的抗剪切性能进行了测试.结果表明:AZ31B与Cu通过固相扩散形成了良好的冶金结合界面,扩散温度低于475℃时扩散溶解层由MgCu2、Mg2Cu和MgCuAl组成,此时接头的薄弱环节为Mg2Cu.扩散温度为500℃时扩散溶解层由Mg2Cu、(α-Mg+Mg2Cu)共晶组织和MgCuAl组成,共晶组织的形成导致接头的抗剪强度进一步降低,并成为新的薄弱环节.当扩散温度为450℃,保温时间为30min时,界面的抗剪强度随保温时间的延长先增大后减小,最大可达40.23MPa.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董凤
陈少平
胡利方
樊文浩
孟庆森
关键词 扩散连接电场扩散溶解AZ31B/Cu    
Abstract:The diffusion bonding of AZ31B/Cu was carried out by field activated diffusion bonding technique (FADB). The microstructure, phase composition of each layer and interface element distribution across the diffusion dissolution layer were analyzed by means of SEM, EDS and TEM. The shearing strength of the bonded interface was evaluated by universal testing machine. The results indicate that complete metallurgical bonding between AZ31B/Cu is reached. When the diffusion temperature is lower than 475℃, the diffusion-dissolution layer is composed of MgCu2, and Mg2Cu and MgCuAl, in which Mg2Cu has the lowest shearing strength. When the diffusion temperature is 500℃, the diffusion-dissolution layer is composed of Mg2Cu, α-Mg+Mg2Cu eutectic and MgCuAl phases, in which α-Mg+Mg2Cu eutectic structure becomes the new weakest section in whole joint and further decrease the shearing strength of the whole joint due to its brittleness. When the diffusion temperature is 450℃, the interfacial shearing strength increases first, then decreases with the increase of holding time, and it reaches the maximum strength of 40.23MPa when the holding time is 30min.
Key wordsdiffusion bonding    electric field    diffusion dissolution    AZ31B/Cu
收稿日期: 2013-08-18     
1:  TB331  
基金资助:国家自然科学基金(50975190,51101111);山西省青年科学研究基金(2011021022-3)
通讯作者: 陈少平(1977-),女,博士,副教授,主要从事电场作用下功能材料的燃烧合成,E-mail: sxchenshaoping@163.com     E-mail: sxchenshaoping@163.com
引用本文:   
董凤, 陈少平, 胡利方, 樊文浩, 孟庆森. 电场作用下AZ31B/Cu扩散界面的结构及性能[J]. 材料工程, 2015, 43(2): 35-40.
DONG Feng, CHEN Shao-ping, HU Li-fang, FAN Wen-hao, MENG Qing-sen. Structure and Properties of AZ31B/Cu Diffusion Interface Under Electric Field. Journal of Materials Engineering, 2015, 43(2): 35-40.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.02.006      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I2/35
[1] 刘静安. 镁合金加工技术发展趋势与开发应用前景[J]. 轻合金加工技术, 2001, 29(11): 1-7.LIU Jing-an. Developing trends and application of magnesium alloy fabrication technology[J]. Light Alloy Fabrication Technology, 2001, 29(11): 1-7.
[2] SCHUBERT E, KLASSEN M, ZERNER I, et al. Light weight structures produced by laser beam joining for future applications in automobile and aerospace industry[J]. Journal of Materials Processing Technology, 2001, 115(2): 2-8.
[3] 李亚江, 王娟, 刘强. 有色金属焊接及应用[M]. 北京: 化学工业出版社, 2006. LI Ya-jiang, WANG Juan, LIU Qiang. Nonferrous Metal Welding and Application[M]. Beijing: Chemical Industry Press, 2006.
[4] SATO Y S, PARK S H C, MICHIUCHI M, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys[J]. Scripta Materialia, 2004, 50(9): 1233-1236.
[5] ZHANG J, SHEN Q, LUO G Q, et al. Microstructure and bonding strength of diffusion welding of Mo/Cu joints with Ni interlayer[J]. Materials & Design, 2012, 39: 81-86.
[6] YAO W, WU A P, ZOU G S, et al. Formation process of the bonding joint in Ti/Al diffusion bonding[J]. Materials Science and Engineering: A, 2008, 480(1-2): 456-463.
[7] HE G, LIU H H, TANG Q B, et al. Diffusion bonding of Ti-2.5Al-2.5Mo-2.5Zr and Co-Cr-Mo alloys[J]. Journal of Alloys and Compounds, 2011, 509(27): 7324-7329.
[8] 陈波, 熊俊平, 毛唯, 等. SiO2f/SiO2复合材料自身及其与铜、不锈钢的钎焊[J]. 航空材料学报, 2012, 32(1): 39-44. CHEN Bo, XIONG Jun-ping, MAO Wei, et al. Brazing of SiO2f/SiO2, SiO2f/SiO2/Cu and SiO2f/SiO2/stainless steel joints[J]. Journal of Aeronautical Materials, 2012, 32(1): 39-44.
[9] LIU L M, WANG S X, ZHOU L M. Study on the dissimilar magnesium alloy and copper lap joint by TIG welding[J]. Materials Science and Engineering: A, 2008, 476(1-2): 206-209.
[10] 王生希. 镁铜异种金属TIG焊接性的研究[D]. 大连: 大连理工大学, 2006. 27-42. WANG Sheng-xi. Study on the TIG welding of dissimilar magnesium alloy and copper[D]. Dalian: Dalian University of Technology, 2006. 27-42.
[11] XU L M, CUI Y Y, HAO Y L, et al. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples[J]. Materials Science and Engineering: A, 2006, 435-436: 638-647.
[12] LIU P, LI Y J, GENG H R, et al. Investigation of interfacial structure of Mg/Al vacuum diffusion-bonded joint[J]. Vacuum, 2006, 80(5): 395-399.
[13] YUAN X J, TANG K L, DENG Y Q, et al. Impulse pressuring diffusion bonding of a copper alloy to a stainless steel with/without a pure nickel interlayer[J]. Materials & Design, 2013, 52: 359-366.
[14] 周媛, 熊华平, 毛唯, 等. TiAl合金与高温合金的扩散焊接头组织及性能[J]. 材料工程, 2012, (8): 88-91. ZHOU Yuan, XIONG Hua-ping, MAO Wei, et al. Microstructures and property of diffusion bonded joints between TiAl alloy and two kinds of superalloys[J]. Journal of Materials Engineering, 2012, (8): 88-91.
[15] 杜双明, 刘刚, 王明静. AZ31B/Cu异种金属过渡液相扩散焊接头的显微组织及性能[J]. 中国有色金属学报, 2013, 23(5): 1255-1261. DU Shuang-ming, LIU Gang, WANG Ming-jing. Microstructure and properties of transient liquid-phase diffusion bonded joint of AZ31B/Cu dissimilar metal[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(5): 1255-1261.
[16] MAHENDRAN G, BALASUBRAMANIAN V, SENTHILVELAN T. Influences of diffusion bonding process parameters on bond characteristics of Mg-Cu dissimilar joints[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6): 997-1005.
[17] 吴铭方. 铝合金与不锈钢低温扩散焊及界面主组元扩散行为研究[D]. 镇江: 江苏大学, 2011. 35-39. WU Ming-fang. Study on diffusion welding with low temperature of Al alloy and stainless steel and diffusion behavior of main elements[D]. Zhenjiang: Jiangsu University, 2011. 35-39.
[18] ZHOU Y, WANG Q, SUN D L, et al. Co-effect of heat and direct current on growth of intermetallic layers at the interface of Ti-Ni diffusion couples[J]. Journal of Alloys and Compounds, 2011, 509(4): 1201-1205.
[1] 李万青, 魏红梅, 何鹏, 高丽娇, 林铁松, 李小强, 赫兰春. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J]. 材料工程, 2015, 43(1): 37-43.
[2] 李佳, 盛光敏. Ti/Nb/Cu作缓冲层的TiC金属陶瓷/304不锈钢扩散连接[J]. 材料工程, 2014, 0(12): 60-65.
[3] 赵博, 李晓刚, 高瑾, 杜翠薇. 电场诱导对不饱和聚酯树脂/炭纤维/纳米炭黑复合材料性能的影响[J]. 材料工程, 2013, 0(4): 85-91.
[4] 黄立国, 付大军, 高志玉. 连续电流场在金属凝固过程中的应用研究[J]. 材料工程, 2011, 0(4): 94-97.
[5] 谷晓燕, 孙大千, 刘力, 段珍珍. Ti3Al基合金与Ti-6Al-4V合金TLP连接接头的组织转变[J]. 材料工程, 2010, 0(6): 59-62,67.
[6] 郎波, 侯金保, 吴松. DD32单晶高温合金过渡液相扩散连接[J]. 材料工程, 2010, 0(10): 32-37.
[7] 黄立国, 付大军, 高志玉. 电磁场对A1-18%Si过共晶合金初晶Si相形貌的影响[J]. 材料工程, 2010, 0(1): 32-35,41.
[8] 张蕾, 滕俊飞, 侯金保. 置氢质量分数0.4% Ti600合金扩散连接[J]. 材料工程, 2008, 0(9): 28-31.
[9] 计芳, 冯可芹, 杨屹, 连姗姗, 吴金岭. 工艺参数对电场诱导Fe-Ti-C系燃烧合成的影响[J]. 材料工程, 2007, 0(12): 52-57.
[10] 刘卫红, 孙大谦, 邱小明, 孙德新. 用纯金属Ni作中间层扩散连接铝基复合材料[J]. 材料工程, 2006, 0(11): 9-12.
[11] 李晓红, 谢永慧, 钟群鹏, 曹春晓. DD3单晶合金短时液相扩散连接接头组织与性能研究[J]. 材料工程, 2005, 0(5): 3-6,10.
[12] 黄立国, 张伟强. 直流电场对Al-Cu共晶合金凝固组织的影响[J]. 材料工程, 2004, 0(10): 36-38,41.
[13] 孙东立, 王美玲, 王秀芳, 武高辉. 电场时效对LY12铝合金微变形行为的影响[J]. 材料工程, 2003, 0(5): 15-18.
[14] 孟胶东, 曲文卿, 庄鸿寿. Al-Cu双金属复合结构的扩散连接试验研究[J]. 材料工程, 2003, 0(1): 34-37.
[15] 刘卫红, 孙大谦, 邱小明, 贾树盛, 殷世强. 铝基复合材料(Al2O3p/6061Al)过渡液相扩散连接[J]. 材料工程, 2002, 0(6): 21-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn