Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (2): 41-46    DOI: 10.11868/j.issn.1001-4381.2015.02.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
GH4706合金的热变形行为与显微组织演化
黄烁1,2, 王磊1, 张北江2, 赵光普2
1. 东北大学 材料各向异性与织构教育部重点实验室, 沈阳 110819;
2. 钢铁研究总院 高温材料研究所, 北京 100081
Hot Deformation Behavior and Microstructure Evolution of GH4706 Alloy
HUANG Shuo1,2, WANG Lei1, ZHANG Bei-jiang2, ZHAO Guang-pu2
1. Key Laboratory for Anisotropy and Texture of Materials(Ministry of Education), Northeastern University, Shenyang 110819, China;
2. High Temperature Materials Division, Central Iron & Steel Research Institute, Beijing 100081, China
全文: PDF(2957 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在Gleeble 3800热模拟试验机上进行GH4706合金的热压缩实验,研究了变形温度为900~1150℃、应变速率为0.001~1s-1范围内合金的热变形行为.结果表明:GH4706合金的真应力-真应变曲线呈现出流变软化特征,随变形温度增加或应变速率减小,峰值应力逐渐降低,峰值应变逐渐减小.合金的本构关系可由双曲正弦函数描述,变形激活能为435.36kJ/mol,应力指数为4.13.合金的显微组织演化机制与Z参数密切相关,高Z值条件下主要发生动态回复,低Z值条件下主要发生动态再结晶与再结晶晶粒粗化.GH4706合金发生完全动态再结晶且不发生晶粒粗化的临界lnZ值为35.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄烁
王磊
张北江
赵光普
关键词 GH4706合金热变形本构关系组织演化    
Abstract:The hot deformation behavior of GH4706 alloy was investigated by compressive deformation performed on Gleeble 3800 machine at deformation temperature of 900-1150℃ and at strain rates of 0.001-1s-1. The results show that the true stress-true strain curves exhibit flow softening characteristic, the peak stress and peak strain decrease gradually with the increase of deformation temperatures or decrease of strain rates. Further, the constitution relationship is modeled using the hyperbolic-sine Arrhenius-type equation. The activation energy and stress exponent are 435.36kJ/mol and 4.13, respectively. The mechanisms of microstructure evolution are related to Z parameter, the domain mechanism is dynamic recovery at higher Z; while is dynamic recrystallization and grain coarsening at lower Z. The critical value of lnZ which the microstructure is completely dynamic recrystallization without grain coarsening is 35.
Key wordsGH4706 alloy    hot deformation    constitutive relationship    microstructure evolution
收稿日期: 2013-08-07     
1:  TG117.1  
基金资助:国家高技术研究发展计划(2012AA03A510);国家重点基础研究发展计划(2010CB631203);大飞机关键构件成型共性技术研究(2012ZX04010-081)
通讯作者: 王磊(1961—),男,博士,教授,研究方向为材料微观组织控制与强韧化,联系地址:沈阳市和平区文化路3-11号东北大学材料与冶金学院(110819), E-mail: wanglei@mail.neu.edu.cn     E-mail: wanglei@mail.neu.edu.cn
引用本文:   
黄烁, 王磊, 张北江, 赵光普. GH4706合金的热变形行为与显微组织演化[J]. 材料工程, 2015, 43(2): 41-46.
HUANG Shuo, WANG Lei, ZHANG Bei-jiang, ZHAO Guang-pu. Hot Deformation Behavior and Microstructure Evolution of GH4706 Alloy. Journal of Materials Engineering, 2015, 43(2): 41-46.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.02.007      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I2/41
[1] SCHILKE P W, SCHWANT R C. Alloy 706 use, process optimization, and future directions for GE gas turbine rotor materials[A]. LORIA E A. Superalloys 718, 625, 706 and Various Derivatives[C]. Warrendale, PA: TMS, 2001. 25-34.
[2] SCHILKE P W, PEPE J, SCHWANT R C. Alloy 706 metallurgy and turbine wheel application superalloys[A]. LORIA E A. Superalloys 718, 625, 706 and Various Derivatives[C]. Warrendale, PA: TMS, 1994. 1-12.
[3] 张北江,赵光普,焦兰英,等. 热加工工艺对GH4586合金微观组织的影响[J]. 金属学报,2005,41(4):351-356.ZHANG B J, ZHAO G P, JIAO L Y, et al. Influence of hot working process on microstructure of superalloy GH4586[J]. Acta Metallurgica Sinica, 2005, 41(4): 351-356.
[4] 曲敬龙,杜金辉,王民庆,等. GH4720Li合金细晶棒材制备的热加工工艺研究[J]. 材料工程,2013,(2):74-77.QU J L, DU J H, WANG M Q, et al. Hot working technology of manufacture of GH4720Li superalloy fine grain bar[J]. Journal of Materials Engineering, 2013, (2): 74-77.
[5] SRINIVASAN N, PRASAD Y V R K. Microstructural control in hot working of IN718 superalloy using processing map[J]. Metallurgical and Materials Transactions A, 1994, 25(10): 2275-2284.
[6] 马龙腾,王立民,胡劲,等. AISl403马氏体不锈钢的热变形特性研究[J]. 材料工程,2013,(5): 38-43. MA L T, WANG L M, HU J, et al. Hot deformation features of AISI403 martensitic stainless steel[J]. Journal of Materials Engineering, 2013, (5): 38-43.
[7] THAMBOO S V. Thermochemical behavior and microstructure development of alloy 706[A]. LORIA E A. Superalloys 718, 625, 706 and Various Derivatives[C]. Warrendale, PA: TMS, 1997. 211-217.
[8] LONG Z D, FU D X, MA P L, et al. Hot-workability of IN 706 alloy[A]. LORIA E A. Superalloys 718, 625, 706 and Various Derivatives[C]. Warrendale, PA: TMS, 1997. 205-210.
[9] LI D F, GUO Q M, GUO S L, et al. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy[J]. Materials & Design, 2011, 32(2): 696-705.
[10] AGHAIE K M, GOLARZI N. Forming behavior and workability of Hastelloy X superalloy during hot deformation[J]. Materials Science and Engineering:A, 2008, 486(1-2): 641-647.
[11] MEDINA S F, HERNANDEZ C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996, 44(1): 137-148.
[12] WANG Y, SHAO W Z, ZHEN L. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718[J]. Materials Science and Engineering:A, 2008, 486(1-2): 321-332.
[13] MEDEIROS S C, PRASAD Y V R K, FRAZIER W G, et al. Microstructure modeling of metadynamic recrystallizaiton in hot working of IN718 superalloy[J]. Materials Science and Engineering:A, 2000, 293(1-2): 198-207.
[14] BROOKS J W. Forging of superalloys[J]. Materials and Design, 2000, 21(4): 297-303.
[15] FESLAND J P, PETIT P. Manufacturing of alloy 706 forging[A]. LORIA E A. Superalloys 718, 625, 706 and Various Derivatives[C]. Warrendale, PA: TMS, 1994. 229-238.
[1] 李卿, 郭鸿镇, 王彦伟, 赵张龙, 姚泽坤. GH4049合金的热变形行为及组织演变[J]. 材料工程, 2014, 0(12): 55-59.
[2] 邬小萍, 李德富, 郭胜利, 许晓庆, 胡捷, 贺金宇. ZnAl10Cu2合金在热变形过程中的球化及动态再结晶[J]. 材料工程, 2014, 0(12): 72-78.
[3] 俞秋景, 张伟红, 于连旭, 刘芳, 孙文儒, 胡壮麒. 铸态Inconel 625合金热加工图的建立及热变形机制分析[J]. 材料工程, 2014, 0(1): 30-34.
[4] 曾莉, 王岩, 李莎, 李阳, 金宪哲. 700℃超超临界锅炉材料GH4700镍基合金组织演变研究[J]. 材料工程, 2013, 0(9): 44-47.
[5] 韦家虎, 董建新, 喻健, 付书红, 姚志浩, 张麦仓. GH4169合金双锥实验组织模拟与验证研究[J]. 材料工程, 2013, (8): 70-74.
[6] 李冬勤, 徐磊, 黄兴民, 戴光泽. 7A04铝合金动态再结晶的临界应变研究[J]. 材料工程, 2013, 0(4): 23-27.
[7] 肖凯. 铸态AZ31镁合金热压缩过程中的再结晶行为[J]. 材料工程, 2012, 0(2): 9-12.
[8] 李文斌, 潘清林, 刘俊生, 梁文杰, 刘晓艳, 何运斌. 含Sc超高强铝合金热压缩时的流变行为和组织演变[J]. 材料工程, 2010, 0(2): 25-28,32.
[9] 司家勇, 高帆, 张继. 变形方向对TiAl合金二次热变形行为的影响[J]. 材料工程, 2010, 0(12): 51-54,65.
[10] 李红恩, 沙爱学. TC18钛合金热压参数对流动应力与显微组织的影响[J]. 材料工程, 2010, 0(1): 85-88.
[11] 陈慧琴, 曹春晓, 郭灵, 林海. TC11钛合金β相区热变形动态再结晶过程的研究[J]. 材料工程, 2009, 0(5): 43-48.
[12] 姜芳, 陈涛, 宁建国. 钢筋混凝土在冲击载荷下的动态力学性能[J]. 材料工程, 2009, 0(3): 45-48,53.
[13] 刘雪峰, 马胜军, 刘锦平, 谢建新. Cu-12%Al合金高温压缩变形过程本构关系的BP神经网络模型[J]. 材料工程, 2009, 0(1): 10-14.
[14] 廖舒纶, 张立文, 岳重祥, 裴继斌, 高惠菊, 贾元伟, 廉晓洁. GCr15钢单道次压缩实验分析及三维模拟[J]. 材料工程, 2008, 0(8): 31-34.
[15] 王狂飞, 郭景杰, 历长云, 熊艳才, 傅恒志. 温度梯度对Ti-45Al合金定向凝固组织演化影响的数值模拟[J]. 材料工程, 2008, 0(7): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn