Please wait a minute...
 
材料工程  2015, Vol. 43 Issue (2): 67-72    DOI: 10.11868/j.issn.1001-4381.2015.02.011
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
超快冷工艺对高铌X80管线钢抗腐蚀性能的影响
周峰1,2, 吴开明1
1. 高性能钢铁材料及其应用湖北省协同创新中心 武汉科技大学 国际钢铁研究院, 武汉 430081;
2. 湖南华菱涟源钢铁有限公司, 湖南 娄底 417009
Influence of Ultra Fast Cooling Process on Corrosion Resistance of High Nb X80 Pipeline Steel
ZHOU Feng1,2, WU Kai-ming1
1. International Research Institute for Steel Technology, Wuhan University of Science and Technology, Hubei Collaborative Innovation Center for Advanced Steels, Wuhan 430081, China;
2. Lianyuan Iron and Steel Co., Ltd., Loudi 417009, Hunan, China
全文: PDF(2187 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 依据NACE标准,研究了采用新型超快速冷却工艺生产的X80管线钢抗硫化物应力腐蚀开裂(SSCC)、抗氢致开裂(HIC)和抗CO2等腐蚀的情况.SSCC腐蚀实验表明,产生开裂的临界应力值在65%σs(390MPa)左右,超过此临界值,试样的腐蚀敏感性较高,抗腐蚀能力较差,在95%σs加载水平下,应力敏感性极高.HIC腐蚀实验表明,裂纹敏感百分比、裂纹长度百分比和裂纹厚度百分比均为零.抗CO2腐蚀实验表明,在CO2压力为0.1MPa条件下,平均腐蚀速率为0.6843mm/a.研究表明采用新型超快冷工艺生产的X80管线钢具有优良的抗SSCC腐蚀性能、抗HIC腐蚀性能和抗CO2腐蚀性能.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周峰
吴开明
关键词 X80管线钢Nb抗腐蚀性能抗硫化物应力腐蚀抗氢致开裂    
Abstract:According to the NACE standard,the corrosion resistance of the new type ultra fast cooling process produced X80 pipeline steel to sulfide stress corrosion cracking (SSCC), hydrogen induced cracking (HIC) and CO2 was investigated. SSCC corrosion experiments show that critical cracking stress value is about 65%σs(390MPa),over the critical value, corrosion sensitivity of the test specimen becomes higher, and the corrosion resistance becomes poor. Under the 95% σs loading level, the stress sensitivity is extremely high. HIC corrosion experiments show that the crack sensitive percentage, the crack length percentage and the crack thickness percentage is all zero, CO2 corrosion resistance experiments show that when the pressure of CO2 is 0.1MPa, the average corrosion rate is 0.6843mm/a. The research shows that the X80 pipeline steel produced by the ultra fast cooling process have superior resistance to SSCC, HIC and CO2.
Key wordsX80 pipeline steel    Nb    corrosion resistance    SSCC    HIC
收稿日期: 2014-02-17     
1:  TG172  
基金资助:国家自然科学基金重点资助项目(50734004)
通讯作者: 吴开明 (1966-),男,教授,博士生导师,主要从事钢铁材料相变、组织控制与焊接性方面的研究, 联系地址:武汉市青山区和平大道947号武汉科技大学8#信箱(430081), E-mail: wukaiming@wust.edu.cn     E-mail: wukaiming@wust.edu.cn
引用本文:   
周峰, 吴开明. 超快冷工艺对高铌X80管线钢抗腐蚀性能的影响[J]. 材料工程, 2015, 43(2): 67-72.
ZHOU Feng, WU Kai-ming. Influence of Ultra Fast Cooling Process on Corrosion Resistance of High Nb X80 Pipeline Steel. Journal of Materials Engineering, 2015, 43(2): 67-72.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2015.02.011      或      http://jme.biam.ac.cn/jme/CN/Y2015/V43/I2/67
[1] 张伟卫,熊庆人,吉玲康,等.国内管线钢生产应用现状及发展前景[J].焊管,2011,34(1):5-8.ZHANG Wei-wei, XIONG Qing-ren, JI Ling-kang, et al. Application and prospect of pipeline steel in China[J]. Welded Pipe and Tube, 2011, 34(1): 5-8.
[2] 张斌,钱成文,王玉梅,等.国内外高钢级管线钢的发展及应用[J].石油管道工程建设,2012,38(1):1-4.ZHANG Bin, QIAN Cheng-wen, WANG Yu-mei, et al. The development and application of high grade pipeline steels at home and abroad [J]. Petroleum Engineering Construction, 2012, 38(1): 1-4.
[3] 王晓香,李延丰.高强度管线钢管开发在中国的新进展[J].钢管,2011,40(1):12-18.WANG Xiao-xiang, LI Yan-feng. Recent progress of domestic R & D of Hi-strength steel linepipe technology[J]. Steel Pipe, 2011, 40(1): 12-18.
[4] 李鹤林,吉玲康.西气东输二线高强韧性焊管及保障管道安全运行的关键技术[J].世界钢铁,2009, (1):56-64.LI He-lin,JI Ling-kang. High strength and ductility welded pipe and key technologies assuring service security for the 2nd west-east gas pipeline project[J]. World Iron & Steel, 2009, (1): 56-64.
[5] 王国栋.以超快速冷却为核心的新一代TMCP技术[J].上海金属,2008,30(2):1-5.WANG Guo-dong. The new generation TMCP with the key technology of ultra fast cooling[J]. Shanghai Metals, 2008, 30(2): 1-5.
[6] 小指军夫.控制轧制控制冷却—改善钢材材质的轧制技术发展[M].北京:冶金工业出版社,2002.XIAO Zhi-jun-fu. Control Rolling Control Cooling-improving Steel Rolling Technology Development of the Material[M]. Beijing: Metallurgical Industry Press, 2002.
[7] 翁宇庆.超细晶钢-钢的组织细化理论与控制技术[M].北京:冶金工业出版社,2003.WENG Yu-qing. Ultrafine Silicon Steel and Steel Organization Elaboration Theory and Control Technology[M]. Beijing: Metallurgical Industry Press, 2003.
[8] LEEUWEN Y V, ONINK M, SIETSMA J. The Gamma-alpha transformation kinetics of low carbon steels under ultra-fast cooling conditions [J]. ISIJ International, 2001, 41(9): 1037-1046.
[9] HOUYOUX C, HERMAN J C, SIMON P, et a1. Metallurgical aspects of ultra fast cooling on a hot strip mill [J]. Revue de Metallurgie, 1997, 97(8): 55-59.
[10] 任呈强,曹然伟,郑云萍, 等. 管线钢的CO2腐蚀行为研究[J].天然气与石油,2011,29(1):58-61. REM Cheng-qiang, CAO Ran-wei, ZHENG Yun-ping, et al. Study on CO2 corrosion behavior of pipeline steel [J]. Natural Gas and Oil, 2011, 29(1): 58-61.
[11] 武会宾,刘跃庭,王立东,等.Cr含量对X120级管线钢组织及耐酸性腐蚀性能的影响[J].材料工程,2013, (9):32-37. WU Hui-bin,LIU Yue-ting,WANG Li-dong,et al.Influence of Cr content on microstructures and acid corrosion properties of X120 grade pipeline steel[J]. Journal of Materials Engineering, 2013, (9): 32-37.
[12] 程远,俞宏英,王莹,等.应变速率对X80管线钢应力腐蚀的影响,材料工程,2013, (6):77-82. CHENG Yuan,YU Hong-ying,WANG Ying,et al. Effect of strain rate on stress corrosion cracking of X80 pipeline steel[J].Journal of Materials Engineering,2013, (6):77-82.
[13] 孔祥磊,黄国建,黄明浩,等.X80管线钢成分工艺与组织性能研究[J].材料热处理技术,2011,40(24):20-23. KONG Xiang-lei, HUANG Guo-jian, HUANG Ming-hao,et al. Effect of composition and process on microstructure and property of X80 pipeline steel [J]. Hot Working Technology, 2011, 40(24): 20-23.
[14] 谢广宇,唐获,张雁,等.X70级管线钢硫化物应力腐蚀开裂行为研究[J].中国腐蚀与防护学报,2008,28(2):86-89. XIE Guang-yu,TANG Di,ZHANG Yan,et al. Effect of composition and process on microstructure and property of X70 pipeline steel [J]. Journal of Chinese Society for Corrosion and Protection, 2008, 28(2): 86-89.
[15] 张雷,胡丽华,孙建波,等.抗CO2腐蚀低Cr管线钢组织和性能研究[J].材料工程,2009, (5):6-10. ZHANG Lei,HU Li-hua,SUN Jian-bo,et al. Microstructure and properties of CO2 corrosion resistant low Cr pipeline steels [J]. Journal of Materials Engineering, 2009, (5): 6-10.
[16] 崔海伟,蔡庆伍,武会宾,等.X80级管线钢抗氢致开裂性能研究[J].材料热处理技术,2009,38(20):46-49. CUI Hai-wei, CAI Qing-wu, WU Hui-bin, et al. Investigation on anti-hydrogen induced cracking properties of X80 pipeline steel [J]. Hot Working Technology, 2009, 38(20): 46-49.
[1] 岳远杰, 唐荻, 武会宾, 梁金明, 巨彪. Nb对高含Cl-强酸性溶液环境中低合金钢腐蚀性能的影响[J]. 材料工程, 2015, 43(6): 14-20.
[2] 李万青, 魏红梅, 何鹏, 高丽娇, 林铁松, 李小强, 赫兰春. Ti3Al和Ti2AlNb合金扩散连接界面的组织及力学性能[J]. 材料工程, 2015, 43(1): 37-43.
[3] 杨东平, 胥聪敏, 罗金恒, 王珂, 李辉辉. 0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为[J]. 材料工程, 2015, 43(1): 89-95.
[4] 周晓光, 王猛, 刘振宇, 杨浩, 吴迪, 王国栋. 超快冷条件下含Nb钢铁素体相变区析出及模型研究[J]. 材料工程, 2014, 0(9): 1-7.
[5] 刘延辉, 姚泽坤, 宁永权, 郭鸿镇. 生物医用TC20钛合金高温变形行为及本构关系[J]. 材料工程, 2014, 0(7): 16-21.
[6] 李佳, 盛光敏. Ti/Nb/Cu作缓冲层的TiC金属陶瓷/304不锈钢扩散连接[J]. 材料工程, 2014, 0(12): 60-65.
[7] 胡春燕, 刘新灵, 陶春虎. 时效温度对0Cr17Ni4Cu4Nb钢组织及力学性能的影响[J]. 材料工程, 2014, 0(11): 73-78.
[8] 任保轶, 王思林, 刘子儒, 张学军. 表面制备SiO2涂层的Ti2AlNb基合金高温氧化激活能研究[J]. 材料工程, 2013, 0(7): 6-10.
[9] 喻利花, 苑彩云, 许俊华. 磁控溅射NbSiN复合膜的微结构和性能[J]. 材料工程, 2013, 0(7): 35-39.
[10] 胡永强, 郭喜平, 郭海生. 热处理对定向凝固Nb-Ti-Si基超高温合金组织及显微硬度的影响[J]. 材料工程, 2013, 0(6): 5-11.
[11] 孔德军, 龙丹, 吴永忠, 叶存冬. X80管线钢埋弧焊接头冲击韧性及其断口形貌分析[J]. 材料工程, 2013, 0(6): 50-54.
[12] 程远, 俞宏英, 王莹, 孟旭, 孙冬柏. 应变速率对X80管线钢应力腐蚀的影响[J]. 材料工程, 2013, 0(3): 77-82.
[13] 戴世娟, 王煜, 陈锋, 余新泉, 张友法. 退火工艺对大形变冷轧Ti-35Nb-9Zr-6Mo-4Sn医用钛合金组织和力学性能的影响[J]. 材料工程, 2013, 0(11): 20-25.
[14] 梁平, 张云霞, 胡传顺. 腐蚀产物膜对X80钢在库尔勒土壤模拟溶液中腐蚀行为的影响[J]. 材料工程, 2012, 0(4): 62-67.
[15] 李建平, 姜洪锋, 毛大恒, 曾立帮. 轧制变形量对铸轧铅合金板带性能的影响[J]. 材料工程, 2012, 0(4): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn